威拉里为3D打印空天关键部件提供“硬核”材料:T70X高温钛合金!

3D打印技术参考注意到,威拉里于4月16日发布消息称,公司经过两年多的技术攻关,成功研发出适用于大幅面LPBF成型技术的T70X高温钛合金粉末,并完成多轮次、多项目的打印测试,测试结果达到预期目标。目前,该材料相关专利已进入申请阶段。现将技术成果正式发布,以期推动更广泛的应用,发挥新材料的应用价值。

随着空天飞行器马赫数的不断提升,发动机机匣及涡轮叶片等关键部件对轻量化和耐高温性能的要求日益严苛。当前,LPBF技术主要应用的TC4和TA15钛合金,在500℃以上工况下力学性能显著下降,难以满足更高温度的使用需求。虽然Ti2AlNb等合金具有较好的耐高温性能,但其在成型过程中存在开裂敏感性问题,难以通过SLM工艺实现大尺寸构件成型,严重制约了规模化应用。

针对这一技术瓶颈,威拉里创新研发出T70X高温钛合金粉末,填补了国内大尺寸增材制造用耐高温钛合金材料的技术空白。

威拉里通过优化合金元素的含量并结合多元素的协同作用,在提高T70X高温钛合金粉末高温性能的同时,有效抑制裂纹敏感性,提升材料的整体性能和可靠性。目前已通过超过500mm幅面的薄壁件打印验证,打印尺寸变形小,热处理无开裂,探伤检测无缺陷。打印可靠性、可成型性、尺寸偏差稳定性以及材料批次稳定性均已得到多次验证。通过优化工艺参数,已实现最小壁厚0.3mm的成型能力。在45°成型角度下,表面质量光滑,整体成型性能与TA15相近。此外,通过焊接实验验证了材料的可焊性,成功打通了相关工艺路径,为后续应用提供了技术保障。

T70X高温钛合金粉末采用电极感应气雾化制粉装备(EIGA)制备,该工艺适用于钛合金、金属间化合物等高活性或难熔金属的粉末生产。威拉里通过技术创新,成功优化了EIGA装备操作流程,实现了连续加料技术的突破性应用。这一创新不仅使设备操作更加简便高效,更显著提升了金属粉末的生产效率,同时大幅降低了生产成本。

威拉里始终秉持创新精神,将进一步拓宽金属增材的应用领域,致力于为行业提供更多技术领先的粉末材料,推动相关产业迈向新高度。

欢迎转发

欢迎加入硕博千人交流Q群:248112776

延伸阅读:

1.蓝箭航天交付第100台火箭发动机,3D打印技术赋能商业航天里程碑

2.科学家发现一种罕见准晶,可提升3D打印铝合金的强度

3.太空金属3D打印,我国已实现技术储备!

4.3D打印最新Science,浙江大学!

内容概要:文章介绍了DeepSeek在国内智能问数(smart querying over data)领域的实战应用。DeepSeek是一款国内研发的开源大语言模型(LLM),具备强大的中文理解、推理和生成能力,尤其适用于企业中文环境下的智能问答、知识检索等。它具有数据可控性强的特点,可以自部署、私有化,支持结合企业内部数据打造定制化智能问数系统。智能问数是指用户通过自然语言提问,系统基于结构化或非结构化数据自动生成精准答案。DeepSeek在此过程中负责问题理解、查询生成、多轮对话和答案解释等核心环节。文章还详细展示了从问题理解、查询生成到答案生成的具体步骤,并介绍了关键技术如RAG、Schema-aware prompt等的应用。最后,文章通过多个行业案例说明了DeepSeek的实际应用效果,显著降低了数据使用的门槛。 适合人群:从事数据分析、企业信息化建设的相关从业人员,尤其是对智能化数据处理感兴趣的业务和技术人员。 使用场景及目标:①帮助业务人员通过自然语言直接获取数据洞察;②降低传统BI工具的操作难度,提数据分析效率;③为技术团队提供智能问数系统的架构设计和技术实现参考。 阅读建议:此资源不仅涵盖了DeepSeek的技术细节,还提供了丰富的实战案例,建议读者结合自身业务场景,重点关注DeepSeek在不同行业的应用方式及其带来的价值。对于希望深入了解技术实现的读者,可以进一步探索Prompt工程、RAG接入等方面的内容。
PSO-ELM,即粒子群优化极限学习机,是一种将粒子群优化算法(PSO)与极限学习机(ELM)相结合的机器学习方法。本次提供的压缩包中包含基于 MATLAB 实现的 PSO-ELM 源代码,版本为 V3.0,旨在通过 PSO 的全局搜索能力优化 ELM 的隐藏层节点参数,从而提升其学习效率与预测性能 。 PSO 是一种基于群体智能的全局优化算法,灵感来源于鸟群觅食行为。在该算法中,每个解决方案被视为一个“粒子”,在解空间中飞行并根据自身最佳位置(个体极值)和群体最佳位置(全局极值)来调整速度与位置。PSO 具有简单易实现、能处理多模态和维问题以及易于并行化的优点 。 ELM 是一种快速单隐藏层前馈神经网络训练方法,由 Huang 等人提出。其核心思想是随机生成隐藏层节点的输入权重和偏置,再通过最小二乘法一次性求解输出层权重,大大提了训练速度。ELM 在模式识别、回归分析和时间序列预测等多个领域表现出色 。 在 PSO-ELM 中,PSO 负责优化 ELM 的隐藏层节点参数,包括输入权重和偏置。借助 PSO 的全局搜索特性,能够找到更优的隐藏层参数组合,进而增强 ELM 的泛化能力,尤其在解决非线性复杂问题时,相比传统 ELM 性能更优 。 MATLAB 是一款广泛应用于数值计算和数据可视化的数学计算及编程环境。PSO-ELM V3.0 的 MATLAB 源码涵盖了完整的算法流程,用户可通过修改参数设置以适应不同问题。代码通常包含初始化粒子群、迭代过程、性能评估等关键部分,便于研究人员理解和调整 。 PSO-ELM 在众多领域有广泛应用,如信号处理(声音识别、图像处理等)中可用于提特征提取和分类的准确性;在工业设备的故障诊断中,能提前预测故障并减少停机时间;在经济预测领域,如股票价格预测,其精度和快速训练速度使其成为实用工具;在电力系统中,可用于电力负荷预测和电力系统
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值