RBF(径向基)神经网络

本文深入探讨了径向基函数(RBF)神经网络,包括其定义、学习问题以及与BP神经网络和SVM的区别。RBF网络是一种特殊的前馈网络,以其快速的收敛性和良好的全局拟合能力著称。同时,文章对比了RBF网络与高斯核函数的关系,以及前馈网络、递归网络和反馈网络的基本概念。
摘要由CSDN通过智能技术生成

转载:https://www.cnblogs.com/pinking/p/9349695.html

只要模型是一层一层的,并使用AD/BP算法,就能称作 BP神经网络。RBF 神经网络是其中一个特例。本文主要包括以下内容:

  1. 什么是径向基函数
  2. RBF神经网络
  3. RBF神经网络的学习问题
  4. RBF神经网络与BP神经网络的区别
  5. RBF神经网络与SVM的区别
  6. 为什么高斯核函数就是映射到高维区间
  7. 前馈网络、递归网络和反馈网络
  8. 完全内插法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值