风翼冰舟的博客

DL和ML学习者

【一些网站的收集】包含机器学习深度学习大牛主页等

数学概念部分 旋转矩阵、欧拉角、四元数的比较 欧拉角和四元数的表示 四元数与旋转 B样条曲线 非常好的概率统计学习的主页 误差方差偏差 编程语言学习 C#编程视频 OpenGL编程NeHe OpenGL官网 OpenGL“我叫MT“纯手工3D动画制作之1——基础介绍 【强大...

2016-06-18 21:59:16

阅读数 18937

评论数 9

【caffe-Windows】caffe+VS2013+Windows+GPU配置+cifar使用

好吧,先说一个坑~~~ 千万千万不要擅自去安装CUDNN的v5版本,caffe貌似真的是不支持哇,表示本人已跳进这个坑,花了一下午才发现此坑,并跳出来了 先来波地址: CUDA:链接:http://pan.baidu.com/s/1nvyA3Qp 密码:h0f3   官方网址:https://de...

2016-05-31 21:37:19

阅读数 25744

评论数 44

【caffe-Windows】caffe+VS2013+Windows无GPU快速配置教程

首先来一波地址: happynear大神的第三方caffe:http://blog.csdn.net/happynear/article/details/45372231 Neil Z大神的第三方caffe:https://initialneil.wordpress.com/2015/01/11/...

2016-05-09 22:02:48

阅读数 69154

评论数 259

【TensorFlow-windows】keras接口——BatchNorm和ResNet

前言 之前学习利用Keras简单地堆叠卷积网络去构建分类模型的方法,但是对于很深的网络结构很难保证梯度在各层能够正常传播,经常发生梯度消失、梯度爆炸或者其它奇奇怪怪的问题。为了解决这类问题,大佬们想了各种办法,比如最原始的L1,L2正则化、权重衰减等,但是在深度学习的各种技巧中,批归一化(Batc...

2018-12-27 20:30:28

阅读数 316

评论数 0

【TensorFlow-windows】keras接口——卷积手写数字识别,模型保存和调用

前言 上一节学习了以TensorFlow为底端的keras接口最简单的使用,这里就继续学习怎么写卷积分类模型和各种保存方法(仅保存权重、权重和网络结构同时保存) 国际惯例,参考博客: 官方教程 【注】其实不用看博客,直接翻到文末看我的colab就行,里面涵盖了学习方法,包括自己的出错内容和一些简单...

2018-12-14 15:20:07

阅读数 610

评论数 0

【TensorFlow-windows】keras接口学习——线性回归与简单的分类

前言 之前有写过几篇TensorFlow相关文章,但是用的比较底层的写法,比如tf.nn和tf.layers,也写了部分基本模型如自编码和对抗网络等,感觉写起来不太舒服,最近看官方文档发现它的教程基本都使用的keras API,这就尴尬了,学一波 国际惯例,参考博客: 官方开始案例 其实网上有很多...

2018-12-11 14:13:54

阅读数 167

评论数 0

强化学习——Qlearning

前言 在控制决策领域里面强化学习还是占很重比例的,最近出了几篇角色控制的论文需要研究,其中部分涉及到强化学习,都有开源,有兴趣可以点开看看: A Deep Learning Framework For Character Motion Synthesis and Editing Phase-Fun...

2018-10-27 17:13:05

阅读数 364

评论数 0

【TensorFlow-windows】学习笔记八——简化网络书写

前言 之前写代码的时候都要预先初始化权重,还得担心变量是否会出现被重复定义的错误,但是看网上有直接用tf.layers构建网络,很简洁的方法。 这里主要尝试了不预定义权重,是否能够实现正常训练、模型保存和调用,事实证明阔以。 验证 训练与模型保存 很简洁的代码直接五十行实现了手写...

2018-08-29 17:49:41

阅读数 191

评论数 2

Openpose——windows编译(炒鸡简单)

前言 最近准备看看rtpose的代码,发现已经由openpose这个项目维护着了,由于经常在windows下调试代码,所以尝试了一下如何在windows下编译openpose源码,结果发现,我靠,炒鸡简单,Cmake一步搞定。 写博客的目的在于,为了避免后续openpose的项目组各种维护各种...

2018-08-27 17:00:10

阅读数 3273

评论数 14

【TensorFlow-windows】学习笔记七——生成对抗网络

前言 既然学习了变分自编码(VAE),那也必须来一波生成对抗网络(GAN)。 国际惯例,参考网址: 论文: Generative Adversarial Nets PPT:Generative Adversarial Networks (GANs) Generative Adversar...

2018-08-21 11:28:29

阅读数 319

评论数 0

【TensorFlow-windows】学习笔记六——变分自编码器

前言 对理论没兴趣的直接看代码吧,理论一堆,而且还有点复杂,我自己的描述也不一定准确,但是代码就两三句话搞定了。 国际惯例,参考博文 论文:Tutorial on Variational Autoencoders 【干货】一文读懂什么是变分自编码器 CS598LAZ - Variati...

2018-08-17 10:38:27

阅读数 1451

评论数 0

【TensorFlow-windows】学习笔记五——自编码器

前言 上一篇博客介绍的是构建简单的CNN去识别手写数字,这一篇博客折腾一下自编码,理论很简单,就是实现对输入数据的重构,具体理论可以看我前面的【theano-windows】学习笔记十三——去噪自编码器 国际惯例,参考博客: 当我们在谈论 Deep Learning:AutoEncoder ...

2018-08-15 10:03:20

阅读数 222

评论数 0

【TensorFlow-windows】学习笔记四——模型构建、保存与使用

前言 上一章研究了一些基本的构建神经网络所需的结构:层、激活函数、损失函数、优化器之类的,这一篇就解决上一章遗留的问题:使用CNN构建手写数字识别网络、保存模型参数、单张图片的识别 国际惯例,参考博客: tensorflow之保存模型与加载模型 【tensorflow】保存模型、再次加载模...

2018-08-03 15:34:26

阅读数 840

评论数 0

【TensorFlow-windows】学习笔记三——实战准备

前言 因为学习TensorFlow的内容较多,如果只看API会很无聊,可以结合实例去学习。但是在构建基本的模型之前,需要学一些准备知识:数据读取、预处理、优化器、损失函数、模型保存和读取 国际惯例,参考网址: TensorFlow中文社区 TensorFlow官方文档 如何选择优化器 o...

2018-08-02 11:57:23

阅读数 876

评论数 0

【TensorFlow-windows】学习笔记二——低级API

前言 上一篇博客初步了解了tensorflow中建立机器学习模型的方法:可以使用eager execution和graph execution两种模式,可以使用高级API estimator中已经封装好的模型,也可以自己创建estimator,更重要的是我们也可以使用低级API自行设计模型。这里...

2018-07-13 16:50:50

阅读数 1437

评论数 0

【TensorFlow-windows】学习笔记一——基础理解

前言 因为Theano已经停止更新了,所以在前面学完Theano搭建RBM,CNN,RNN相关结构以后,还是得选择一个主流框架的,由于我自身的学习最终是向强化学习靠近,可能用到的仿真环境是openai gym,所以选择了继续学习TensorFlow,而非pyTorch,CNTK之类的深度学习框架...

2018-07-12 11:38:08

阅读数 1876

评论数 0

刚体运动学-四元数插值

前言 之前对写了一篇关于刚体运动学相关知识博客:刚体运动学——欧拉角、四元数、旋转矩阵,本篇博客就举例来说明,如何在运动捕捉数据中进行四元数插值。 国际惯例,参考博客: 探讨:向量(方向)之间的插值-四元数法VS.旋转矩阵法的性能比较 书籍《3D数学基础:图形与游戏开发》 插值理论...

2018-07-10 12:01:13

阅读数 1569

评论数 0

刚体运动学——欧拉角、四元数、旋转矩阵

前言 刚体运动旋转一般用:欧拉角、四元数、轴角对等表示,在对某个坐标旋转的时候,只需将欧拉角或四元数转换为旋转矩阵,并与原始坐标相乘,便可得到旋转以后的坐标。这里主要看看欧拉角、四元数和旋转矩阵。 国际惯例,参考博客: 四元数与旋转 【Unity技巧】四元数(Quaternion)和旋转 ...

2018-07-09 18:12:15

阅读数 3929

评论数 0

【theano-windows】学习笔记二十——LSTM理论及实现

前言 上一篇学习了RNN,也知道了在沿着时间线对上下文权重求梯度的时候,可能会导致梯度消失或者梯度爆炸,然后我们就得学习一波比较常见的优化方法之LSTM 国际惯例,参考网址: LSTM Networks for Sentiment Analysis Understanding LSTM N...

2018-07-06 18:08:41

阅读数 1491

评论数 0

【theano-windows】学习笔记十九——循环神经网络

前言 前面已经介绍了RBM和CNN了,就剩最后一个RNN了,抽了一天时间简单看了一下原理,但是没细推RNN的参数更新算法BPTT,全名是Backpropagation Through Time。 【注】严谨来说RNN有两个称呼:①结构上递归的recursive neural network,通...

2018-07-05 18:07:16

阅读数 1508

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭