《高性能Mysql》读书笔记(三):索引类型和高性能索引策略

博客链接:Cs XJH’s Blog

索引类型

B-Tree索引

B-Tree索引基于B-Tree结构实现,B-Tree是平衡多路查找树,该索引支持全键值、范围键值、键前缀匹配查找。为了清楚地了解数据库如何在磁盘中通过B-Tree索引精确地查找数据,接下来从磁盘层面了解下原理:

系统从磁盘读取数据到内存是以磁盘块为最小基本单位的,所以,初步查询是从磁盘块开始的。

InnoDB存储引擎有页的概念,页是其存储引擎的最小存储单元,默认页的存储大小为16k。而磁盘块的大小没有页那么大,所以,InnoDB引擎可以一次申请若干连续的磁盘块。

磁盘块中包含若干条记录和指针,指针指向其他磁盘块,而记录由键值和data两部分组成。该键为主键,data则是除主键外的其他列数据。

B-Tree.jpg

如上图所示,如果需要查询某条行记录,首先将磁盘块1读入内存,根据需要查询的主键值和B-Tree的性质,可以高效地查询到对应的记录数据或者指向目标磁盘块的指针。


在InnoDB存储引擎中使用的是B+Tree的存储结构,B+Tree是B-Tree的优化结构,可以更高效地帮助查询记录。

由上面可知,B-Tree的高度受data数据大小的影响。如果data数据较大,那么一个磁盘块可以存储的记录数将会很少,那么对应的B-Tree的高度将增加。又由于将磁盘块数据读入内存的IO操作是影响查询效率的关键,而B-Tree越高则进行IO操作的次数将越多,对效率影响越大。

B+Tree相对于B-Tree特点:

  • 非叶子结点只存储键值
  • 叶子结点存储所有的键值和对应的记录
  • 叶子结点构成循环链表

由于B+Tree非叶子结点只存储键值,那么极大地限制了树的高度,减少了IO操作。并且,叶子结点的循环链表结构也有利于进行范围查询操作。

B+Tree.jpg

哈希索引

哈希索引是基于哈希表结构实现,只支持精确匹配。对于每一行数据,存储引擎都会对索引列计算得到一个哈希码。哈希索引将哈希码存储在索引中,同时在哈希表中保存指向每个数据行的指针。如果哈希码重复,将以链表的方式存储多个记录到同一哈希码下。

如果需要根据哈希索引查询记录,首先会计算该行记录索引列值的哈希码,然后根据哈希码匹配索引中的哈希码,匹配成功后,拿到指向记录的指针,遍历指针指向的记录,如果键值相同则是目标记录。

哈希索引自身只存储对应的哈希值,所以索引结构十分紧凑,这也让哈希查找的速度十分快。但哈希索引也有一些限制:

  • 无法用于排序
  • 不支持部分索引列匹配查找
  • 只支持等值匹配查找
  • 哈希冲突很多的情况下,维护成本代价会提高

高性能的索引策略

前缀索引和索引的选择性

有时候需要对于很长的字符列建立索引,但直接对这列数据建立索引不但耗费存储空间,而且是很低效的。一个好的方案是索引该列数据开始的部分字符,但一个缺点是这会降低索引的选择性。

索引的选择性是不重复值数量与记录总数的比值,说白了就是数据的不重复率,不重复率越高,那么索引的选择性越高,索引也就越高效。
常用的计算索引选择性的SQL语句:SELECT COUNT(DISTINCT column) / COUNT(*) FROM table

多列索引及索引列顺序

建立索引的依据在于SQL语句的查询和排序条件,并且,我们常常查询时会与多个列相关。如果你直接对相关的所有列建立单列索引,这样的索引性能是很低的,因为这样一来最好的情况下也只能是“一星”索引,在其之前,还有“二星”,“三星”等索引,和它们间的差距是几个数量级的。

于是,就到了我们的多列索引出场了。根据SQL的条件只创建一个索引,却索引多个列。但这里还有一个问题,就是索引列的顺序。

因为多列索引需要服从最左列匹配原则。说白了就是索引列排序的优先顺序,并且,只有左边的索引列都使用了,才会使用该索引。此外,为了索引的高性能考虑,索引列中索引选择性越高的列应该排在前面

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值