二叉树的非递归遍历

能够掌握二叉树的非递归遍历就能真正理解二叉树的过程!!

1.先序遍历

按照根--左--右的顺序进行遍历

void pretravel(struct node *p)
{
    if(p!=NULL)
    {
        printf("%c",p->data);
        pretravel(p->l);
        pretravel(p->r);
    }
}

非递归的遍历:

根据前序遍历访问的顺序,优先访问根结点,然后再分别访问左孩子和右孩子。即对于任一结点,其可看做是根结点,因此可以直接访问,访问完之后,若其左孩子不为空,按相同规则访问它的左子树;当访问其左子树时,再访问它的右子树。因此其处理过程如下:

     对于任一结点P:

     1)访问结点P,并将结点P入栈;

     2)判断结点P的左孩子是否为空,若为空,则取栈顶结点并进行出栈操作,并将栈顶结点的右孩子置为当前的结点P,循环至1);若不为空,则将P的左孩子置为当前的结点P;

     3)直到P为NULL并且栈为空,则遍历结束。

void pretravel(struct node *p)     //非递归前序遍历 
{
    stack<struct node *> s;
    struct node *q=p;
    while(q!=NULL||!s.empty())
    {
        while(q!=NULL)
        {
            cout<<q->data<<" ";
            s.push(q);
            q=q->lchild;
        }
        if(!s.empty())
        {
            q=s.top();
            s.pop();
            q=q->rchild;
        }
    }
}
2.中序遍历

按照左--根--右的顺序遍历

void intravel(struct node *p)
{
    if(p!=NULL)
    {
        intravel(p->l);
        printf("%c",p->data);
        intravel(p->r);
    }
}

非递归实现:

根据中序遍历的顺序,对于任一结点,优先访问其左孩子,而左孩子结点又可以看做一根结点,然后继续访问其左孩子结点,直到遇到左孩子结点为空的结点才进行访问,然后按相同的规则访问其右子树。因此其处理过程如下:

   对于任一结点P,

  1)若其左孩子不为空,则将P入栈并将P的左孩子置为当前的P,然后对当前结点P再进行相同的处理;

  2)若其左孩子为空,则取栈顶元素并进行出栈操作,访问该栈顶结点,然后将当前的P置为栈顶结点的右孩子;

  3)直到P为NULL并且栈为空则遍历结束

</pre><pre name="code" class="cpp">void intravel(struct node *p)      //非递归中序遍历
{
    stack<struct node *> s;
    struct node *q=p;
    while(q!=NULL||!s.empty())
    {
        while(q!=NULL)
        {
            s.push(q);
            q=q->lchild;
        }
        if(!s.empty())
        {
            q=s.top();
            cout<<q->data<<" ";
            s.pop();
            q=q->rchild;
        }
    }    
}


3.后序遍历

按照左--右--根的顺序遍历

void lasttravel(struct node *p)
{
    if(p!=NULL)
    {
        lasttravel(p->l);
        lasttravel(p->r);
        printf("%c",p->data);
    }
}

非遍历的实现

对于任一结点P,将其入栈,然后沿其左子树一直往下搜索,直到搜索到没有左孩子的结点,此时该结点出现在栈顶,但是此时不能将其出栈并访问,因此其右孩子还为被访问。所以接下来按照相同的规则对其右子树进行相同的处理,当访问完其右孩子时,该结点又出现在栈顶,此时可以将其出栈并访问。这样就保证了正确的访问顺序。可以看出,在这个过程中,每个结点都两次出现在栈顶,只有在第二次出现在栈顶时,才能访问它。因此需要多设置一个变量标识该结点是否是第一次出现在栈顶。

void postOrder2(BinTree *root)    //非递归后序遍历
{
    stack<BTNode*> s;
    BinTree *p=root;
    BTNode *temp;
    while(p!=NULL||!s.empty())
    {
        while(p!=NULL)              //沿左子树一直往下搜索,直至出现没有左子树的结点 
        {
            BTNode *btn=(BTNode *)malloc(sizeof(BTNode));
            btn->btnode=p;
            btn->isFirst=true;
            s.push(btn);
            p=p->lchild;
        }
        if(!s.empty())
        {
            temp=s.top();
            s.pop();
            if(temp->isFirst==true)     //表示是第一次出现在栈顶 
             {
                temp->isFirst=false;
                s.push(temp);
                p=temp->btnode->rchild;    
            }
            else                        //第二次出现在栈顶 
             {
                cout<<temp->btnode->data<<" ";
                p=NULL;
            }
        }
    }    
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值