线性回归算法总结

线性回归用于预测和模型合理性检验,涉及变量选择、避免过度拟合和多重共线性问题。通过最小二乘法求解回归方程,适用于内插不擅长外推。多元线性回归关注判定系数、回归系数显著性及模型拟合程度。虚拟变量影响截距,逐步回归用于变量筛选。回归诊断包括正态性、离群值、线性合理性、误差假设及多重共线性检测,多重共线性可能导致模型不稳定。
摘要由CSDN通过智能技术生成

回归是指利用样本(已知数据),产生拟合方程,从而对(未知数据)进行预测。

用途:预测、判别合理性。

困难:①选定变量(多元);②避免多重共线性;③观察拟合方程,避免过度拟合;④检验模型的合理性。

因变量与自变量的关系:①相关关系(非确定性关系,比如物理与化学成绩相关性),使用相关系数衡量线性相关性的强弱;②函数关系(确定性关系)

相关系数求解:Pearson样本积矩相关系数


注意,如果样本是两组配对的顺序数据时,则采用Spearman等级相关系数(秩相关或名次相关)


公式中,分别表示的名次(从大到小或从小到大)。


线性回归中最小二乘法的应用

判断直线拟合程度,如果是通过点向直线引垂线,由解析几何点到直线的距离公式可知,涉及到开方,这样不好求极值,所以改为由点向直线引竖直线求长度,去绝对值,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值