数组实现加法专题
数组实现整数加法
LeetCode66:
给定一个有整数组成的非空数组所表示的非负整数,在该数的基础上加一。
最高位数字存放在数组的首位,数组中每个元素只能存储单个数字。
你可以假设除了整数0之外,这个整数不会以0开头。
示例1:
输入:digits = [1,2,3]
输出:[1,2,4]
解释:输入数组表示数字 123。
示例2:
输入:digits = [4,3,2,1]
输出:[4,3,2,2]
解释:输入数组表示数字 4321。
示例3:
输入:digits = [0]
输出:[1]
public static int[] plusOne(int[] digits){
for (int i = digits.length - 1; i >= 0; i--){
//末尾不为9
if (digits[i] != 9){
digits[i]++;
//有多个9情况,找到第一个不为9的元素,后面的全部置为0
for (int j = i + 1; j < digits.length; j++){
digits[j] = 0;
}
return digits;
}
}
//全部为9的情况,创建一个新数组,比原数组多一位,第一位为1,其余为0
int[] res = new int[digits.length + 1];
res[0] = 1;
return res;
}
二进制加法
LeetCode67:
给你两个二进制字符串a 和 b,以二进制字符串的形式返回他们的和。
示例1:
输入:a = “11”,b = ”1“
输出:”100“
示例2:
输入:a = ”1010“,b = ”1011“
输出:”10101“
public static String addBinary(String a,String b){
StringBuilder stringBuilder = new StringBuilder();
int i = a.length() - 1;
int j = b.length() - 1;
int ca = 0;
//循环相加两个字符串相同长度的低位数部分
while (i >= 0 && j >= 0){
int sum = ca;
sum += a.charAt(i--) - '0';
sum += b.charAt(j--) - '0';
ca = sum / 2;
stringBuilder.append(sum % 2);
}
//a遍历未完成,添加a剩余的部分
while (i >= 0){
int sum = ca + a.charAt(i--) - '0';
ca = sum / 2;
stringBuilder.append(sum % 2);
}
//b遍历未完成,继续添加b剩余的部分
while (j >= 0){
int sum = ca + b.charAt(j--) - '0';
ca = sum / 2;
stringBuilder.append(sum % 2);
}
//ca不等0,还有个进位数没加,需要加进去
if (ca == 1){
stringBuilder.append(ca);
}
//反转字符串
return stringBuilder.reverse().toString();
}
幂运算
求2的幂
LeetCode231:
给你一个整数n,请你判断该整数是否是2的幂次方。如果是,返回true;否则,返回false。
如果存在一个整数x使得 n == 2^x,则认为n是2的幂次方。
示例1:
输入:n = 1
输出:true
解释:2^0 = 1
示例2:
输入:n = 16
输出:true
解释:2^4 = 16
示例3:
输入:n = 3
输出:false
示例4:
输入:n = 4
输出:true
示例5:
输入:n = 5
输出:false
public static boolean isPowerOfTwo(int n){
if (n == 1){
return true;
}
int a = 1;
int target = n;
while (n > 1){
a *= 2;
if (a == target){
return true;
}
n /= 2;
}
return false;
}
求3的幂
LeetCode326:
给定一个整数,写一个函数来判断它是否是3的幂次方,如果是,返回true;否则,返回false。
整数n是3的幂次方需满足:存在整数x使得n == 3^x
示例1:
输入:n = 27
输出:true
示例2:
输入:n = 0
输出:false
示例3:
输入:n = 9
输出:true
示例4:
输入:n = 45
输出:false
public static boolean isPowerOfThree(int n){
while (n != 0 && n % 3 == 0){
n /= 3;
}
return n == 1;
}