算法练习-连号区间数

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Amo_te_ama_me/article/details/50824824

问题描述
小明这些天一直在思考这样一个奇怪而有趣的问题:

在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:

如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。

当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。

输入格式
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。

第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。

输出格式
输出一个整数,表示不同连号区间的数目。

样例输入1
4
3 2 4 1
样例输出1
7
样例输入2
5
3 4 2 5 1
样例输出2
9
解释:
第一个用例中,有7个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [2,2], [3,3], [4,4]
第二个用例中,有9个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [1,5], [2,2], [3,3], [4,4], [5,5]

这一道题考的就是你读题能力!
没有读懂题的意思直接看后面给出的数据的话,会看不懂数据!

题中所说:如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。括号里都给指出了是即此排列的第L个到第R个元素,而不是L到R!!!
比如第一个样例:
样例输入1:
4
3 2 4 1
[1,4]是其中的一个连号区间,如果你没有读懂题意,直接看[1,4]的话,你可能看不懂有什么规律。
但是你把它看作是3241的下标,即第一个到第四个元素,即3241,其中最大值4,最小值1,
区间长度4-1=4-1;同理类推其他数据!

public class 连号区间数 {

    private static int[] a=new int[50005];
    public static void main(String[] args) {
        int i,j,minn,maxn,n,ans;
        n=new Scanner(System.in).nextInt();
        for(i=1;i<=n;i++){
            a[i]=new Scanner(System.in).nextInt();
        }
        ans=0;
        for(i=1;i<=n;i++){
            minn=n;
            maxn=1;
            for (j = i;  j<=n; j++) {
                maxn=Math.max(maxn, a[j]);
                minn=Math.min(minn, a[j]);
                if(maxn-minn==j-i)
                    ans++;
            }
        }
        System.out.println(ans);
    }

}
展开阅读全文

没有更多推荐了,返回首页