自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 收藏
  • 关注

原创 在Caffe中添加Normalize层

1、复制 .cu .cpp .hpp 文件(SSD-caffe)到对应的位置2、修改caffe.proto文件,添加以下红色字体部分    syntax = "proto2";package caffe;// Specifies the shape (dimensions) of a Blob.message BlobShape { repeated int64 dim = 1 [p...

2018-06-30 14:25:53 3461 1

转载 【RCNN系列】【超详细解析】

一、基于Region Proposal(候选区域)的深度学习目标检测算法Region Proposal(候选区域),就是预先找出图中目标可能出现的位置,通过利用图像中的纹理、边缘、颜色等信息,保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率(IoU,Intersection-over-Union)。图1  IoU定义Region Proposal方

2017-12-15 10:03:46 42062 6

转载 【修改anchor】目标检测框架py-faster-rcnn修改anchor_box

转载 https://www.baidu.com/link?url=SAKuraONHiTiAvhvLo9Y4cyKwaGs6tmh6CYnpkGLf4otTOUcAgDh8LpA9YW5dcnzTUUIj40GRKXW2dQIlYkpjq&wd=&eqid=ac17b8bc000122dd000000035a30e220众所周知,anchor_box控制了回归框的大小,我们有

2017-12-13 16:20:02 1875

转载 在ROIPooling层加入pad_ratio实现context

在RFCN的ps-roipooling层,加入pad_ratio,                                                                                                                                     相当于起到增大了proposal对应原图的尺寸,比如pad_rati

2017-12-05 11:21:31 707

转载 【Faster rcnn】【input-data】【layer.py解析】固定输入尺寸

转载  http://m.blog.csdn.net/u010668907/article/details/51945844http://blog.csdn.net/iamzhangzhuping/article/details/51355497博客一:3.1 setup在caffe.SGDSolver时调用;setup的top(list猜测是c++的v

2017-11-15 21:41:25 2547

转载 深度学习之卷积神经网络CNN及tensorflow代码实现示例

原文地址 :http://blog.csdn.net/cxmscb/article/details/71023576一、CNN的引入在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的。当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 28×28 的手写数字图片,输入层的神经元就有784个

2017-11-07 20:48:42 850

转载 【py-faster-rcnn】【RPN】通过代码理解faster-RCNN中的RPN

原文地址 http://blog.csdn.net/happyflyy/article/details/549175141. RPN简介RPN是regional proposal networks的缩写,是faster-RCNN结构中的一部分。faster-RCNN由两个子网络构成。第一个子网络RPN的作用是在给定图像上提取一定数量带有objectness(是否包含目标的置信度)。

2017-11-06 15:59:02 1847

转载 【py-faster-rcnn】【训练自己数据】需要修改的参数小记

运行环境:cpu训练图片大小为300*330,类别数11。1.修改VGG_CNN_M_1024模型配置文件1)solver.protxt文件stepsize原先为10000,根据需要更改。2)train.protxt文件“input-data”层的‘num_class’数值改为11;“rpn-data”层的feat_stride由原先的16改

2017-11-05 20:49:51 3909 3

转载 caffe中train_val.prototxt和deploy.prototxt文件的区别

原文地址 http://blog.csdn.net/starzhou/article/details/542908381. train_val.prototxt 首先,train_val.prototxt文件是网络配置文件。该文件是在训练的时候用的。2.deploy.prototxt该文件是在测试时使用的文件。区别:首先dep

2017-11-05 10:11:01 1006

转载 【干货】【通过特征可视化分析调整网络技巧】

原文链接:http://tech.sina.com.cn/roll/2017-03-24/doc-ifycsukm3483430.shtml雷锋网(公众号:雷锋网)按:作者杨军,从事大规模机器学习系统研发及应用相关工作。本文整理自知乎,已获作者授权。本文将分享一些自己关于深度学习模型调试技巧的总结思考(以CNN为主)。最近因为一些需要,参与了一些CNN建模调参的

2017-11-02 16:05:20 1061

转载 【论文笔记】【特征可视化及分析改进】Visualizing Features from a Convolutional Neural Network

Matthew D. Zeiler,Rob Fergus. Visualizing and Understanding Convolutional Networks.CVPR2014.论文下载推荐一篇比较好的blog: Visualizing Features from a Convolutional Neural Network( github-tensorFlow程

2017-11-02 15:55:45 836

转载 【Caffe特征图可视化】【权重图weight】【特征图feat】

1 使用caffeNet训练自己的数据集主要参考:官方网址:http://caffe.berkeleyvision.org/gathered/examples/imagenet.html数据集及第一部分参考网址:http://www.lxway.com/4010652262.htm主要步骤:1. 准备数据集2. 标记数据集3. 创建lmdb格式的数据4. 计

2017-11-02 11:13:25 2403

转载 【Caffe踩坑超有用记录】Ubuntu 15.10/16.04 上安装Caffe——确保编译好的库相互兼容

前言:     在Ubuntu14.04 LTS版本上编译安装Caffe的教程非常多,安装过程也较为顺利,然而在更新版本系统上编译安装Caffe的过程中,仍会遇到很多问题。其中,在make过程中遇到undefined reference to ‘xxx’,在make runtest 过程中遇到Segmentation faul这两个错误非常常见,在github的BVLC/caffe issue

2017-10-27 15:02:26 952

转载 【Caffe特征图可视化】【caffemodel 权重图】

这一节参考http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/filter_visualization.ipynb,主要介绍如何显示每一层的参数及输出,这一部分非常重要,因为在深度学习中我们关注的就是它学习出来的到底是什么东西1、导入相关模块以及设置画图参数import numpy as npi

2017-10-27 11:10:52 840

转载 【Cffe特征图可视化】【特征图】【非权重图】

现在Caffe的Matlab接口 (matcaffe3) 和python接口都非常强大, 可以直接提取任意层的feature map以及parameters, 所以本文仅仅作为参考, 更多最新的信息请参考:http://caffe.berkeleyvision.org/tutorial/interfaces.html 原图  conv1层可视化结果 (96个

2017-10-27 11:09:04 708

转载 经典网络的 TensorFlow 实现资源汇总

本系列文章由 @yhl_leo 出品,转载请注明出处。 文章链接: http://blog.csdn.net/yhl_leo/article/details/57412234 本文简单整理了网上公布的基于 TensorFlow 实现图像语义分析的一些经典网络,方便大家参考学习。1. TensorFlow-SlimTF-Slim 是 tensorf

2017-10-25 11:01:12 514

转载 【caffe编译踩坑】解决类似 /usr/lib64/libstdc++.so.6: version `GLIBCXX_3.4.21' not found 的问题

源码编译升级安装了gcc后,编译程序或运行其它程序时,有时会出现类似/usr/lib64/libstdc++.so.6: version `GLIBCXX_3.4.21' not found的问题。这是因为升级gcc时,生成的动态库没有替换老版本gcc的动态库导致的,将gcc最新版本的动态库替换系统中老版本的动态库即可解决。1. 问题原因分析为了安装最新版本的Nod

2017-10-24 15:15:12 2846

转载 【CNN削减阅读笔记】【简化网络设计】【低秩分解】

转载自:http://blog.csdn.net/electech6/article/details/72822009孙剑:简化网络设计方法旷世科技研究院院长孙剑的报告中介绍了模型压缩优化。他举了个例子,比如在对图像分类的时候,随着层级的增加,应该把图像的空间分辨率慢慢缩小,但这同时也需要增加每一层中的filter 数。另外实践中发现用小的filter 是更经济的,还有用Low

2017-10-12 09:54:39 2258

转载 caffe绘制训练过程的loss和accuracy曲线

2017-09-20 10:42:30 413

转载 【Bug解决】【转载】version `GLIBCXX_3.4.21' not found

转自:http://www.bubuko.com/infodetail-2223145.html问题描述:import caffe 时ImportError: /home/dl/anaconda2/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.21' not found (required by /home/dl/why/adver

2017-09-14 10:22:03 5828

转载 【论文笔记】非常高效的物体检测mimic方法 Mimicking Very Efficient Network for Object Detection

转载:http://www.sohu.com/a/160564635_651893AI科技评论按:CVPR 2017正在夏威夷火热进行中,精彩论文层出不穷。下文是Momenta 高级研发工程师蒋云飞对此次 CVPR 收录的 Mimicking Very Efficient Network for Object Detection 论文进行的解读。背景Mimic作为一

2017-09-07 11:04:25 1722

转载 【论文笔记摘要】RON:Reverse connection with Objectness prior Networks

转载出处:http://www.sohu.com/a/156480214_4732831新智元编译来源:arxiv.org作者:孔涛、孙富春等人编译:熊笑基于深度网络的目标对象检测可以分为 region-based 和 region-free 两种方法目标对象检测领域正在取得重大进展,这主要得益于深度网络。当前最好的基于深度网络的目标检测框架可以分为

2017-09-07 10:27:09 1022

转载 【转】关于上采样反卷积的一些知识

原文链接:http://www.2cto.com/kf/201609/545237.html前言(呕血制作啊!)前几天刚好做了个图像语义分割的汇报,把最近看的论文和一些想法讲了一下。所以今天就把它总结成文章啦,方便大家一起讨论讨论。本文只是展示了一些比较经典和自己觉得比较不错的结构,毕竟这方面还是有挺多的结构方法了。介绍图像语义分割,简单

2017-07-21 11:26:07 12052

转载 【A-faster rcnn源码相关】及训练日志

开源|如何用Caffe深度学习框架实现A-Fast-RCNN2017-04-13 11:33  全球人工智能文章来源:arxiv、Github 编译:马卓奇文章投稿:news@top25.cn  论文摘要:A-Fast-RCNN模型通过用对抗网络生成具有遮挡和变形的样本,并用其训练检测网络,从而使得网络能够对样本的遮挡和变形问题更加的鲁棒。  如何学习一个具有变

2017-06-12 17:07:52 1427

转载 【转】Faster-rcnn训练笔记

转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/一、工程目录首先工程的根目录简单的称为 FRCN_ROOT,可以看到根目录下有以下几个文件夹caffe-fast-rcnn这里是caffe框架目录data用来存放pretrained模型 比如imagenet上的,以及

2017-04-04 13:48:14 432

转载 faster rcnn 主要代码解读

转载自:py-faster-rcnn源码解读系列(一)——train_faster_rcnn_alt_opt.py - sunyiyou9的博客 - 博客频道 - CSDN.NEThttp://blog.csdn.Net/sunyiyou9/article/details/52207486py-faster-rcnn源码解读系列(二)——pascol_voc.p

2017-03-29 16:08:38 575

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除