- 博客(38)
- 资源 (4)
- 收藏
- 关注
原创 校园车辆管理系统的设计与实现
详细介绍校园车辆管理系统开发中所涉及的相关技术,包括对现有车辆管理系统的分析,使用到的主要技术,以及系统开发所需的工具与环境。
2024-06-14 13:11:58 1029
原创 基于TSM模块的打架斗殴识别技术
传统的视频监控系统主要依赖于人工观察,这不仅效率低下,而且容易受到人的主观因素影响,如视觉疲劳等,从而大大降低了识别的准确性和实时性。随着人工智能技术的发展,利用计算机视觉进行自动识别已成为可能。其中,TSM(Temporal Shift Module,时间位移模块)算法作为一种先进的动作识别技术,其在打架斗殴识别中的应用尤为突出。
2024-04-22 16:28:14 1660
原创 切割机控制系统毕业设计
随着中国智能制造及钢铁企业连续铸钢技术的快速发展,对能够快速、稳定、高效切割连铸坯的新型设备需求量日益增长。传统的连铸坯切割设备投资成本高,故障维修率高,并且切割铸坯的长度不精确,铸坯断面不平整有变形。因此设计一个静态切割机控制系统尤为重要。
2024-04-22 14:05:14 1111 1
原创 电子证据的固定方法研究
在当今数字化时代,网络诈骗已成为全球性的问题,随着互联网的普及和网络经济的发展,诈骗手段不断演化,变得更加隐蔽和复杂。这些诈骗行为不仅对个人和企业造成经济损失,还破坏了网络空间的安全和信任基础。尽管各国政府和网络安全机构已经采取了多种措施来打击网络诈骗,但由于电子证据的特殊性,使得证据的固定和取证成为了一个挑战。
2024-04-19 15:27:38 1386 2
原创 重塑未来医疗:用AI挑战病例分析和误诊率的边界
随着患者需求的增加和医疗技术的复杂性提升,医生们面临着越来越大的诊疗压力,这不仅影响了医生的身心健康,也增加了诊断错误的风险。
2024-04-11 22:44:11 650
原创 教育领域的AI创新:个性化学习与智能辅导
智能辅导机器人则能够根据学生的知识水平和学习目标,提供个性化的学习建议和辅导内容。例如,机器学习算法可以分析学生的学习行为模式,了解他们的学习偏好和弱点,然后针对性地调整辅导策略,提供更加有效的学习建议和指导。
2024-04-11 20:33:52 1337
原创 智能学习新纪元:AI个性化教育平台的革命
在AI个性化教育平台的应用领域,即便是普通人也有多种创业机会。AI技术在教育中的应用正逐步扩展,不仅限于传统的教育内容提供,还包括个性化学习路径的设计、学习效果的评估、互动式学习体验的创造等。
2024-04-10 23:40:33 1134
原创 未来驾驶的革命:自动驾驶技术与智能交通系统的崛起
虽然自动驾驶技术和智能交通系统的开发似乎是资本密集型且技术要求高的领域,主要由大型企业主导,但普通创业者仍有机会从多个角度切入这一领域。
2024-04-10 23:21:27 903
原创 AI创业项目:AI旅游规划定制师
在当前的旅游市场中,个性化旅游规划成为越来越多旅行者的需求。然而,现行的定制旅行服务主要依赖于人工定制师,这一模式面临着信息不透明、价格弹性大等挑战。定制师在客户与服务供应商之间掌握着信息差,依靠这一优势获得收益,而这种模式往往无法保证服务的公平性和最优性。客户的旅行体验和成本效益受到了限制,市场急需一种新的解决方案。
2024-04-09 20:25:17 1342
原创 财富管理新智能:AI个人理财助手的时代
在现代金融环境中,提升个人的财务素养和投资决策能力的重要性,在投资决策过程中,对信息质量的甄别和理性分析非常有必要。
2024-04-09 18:34:39 1070
原创 AI创业项目--个性化旅游规划助手
集合了最新人工智能技术、用户界面友好、并且高度个性化的旅行规划工具。它能够理解并预测用户的偏好和需求,提供量身定制的旅行建议和完整的旅游计划。
2024-04-08 17:59:32 564
原创 物流未来之路:用AI优化路线和革新货物追踪
随着消费者对快速、灵活和透明物流服务的期待不断提高,物流企业需要不断创新和调整策略,以满足市场需求。AI技术提供了强大的工具,可以解决物流行业面临的多个挑战,从而提高效率,降低成本,增强透明度,并改善客户体验。
2024-04-08 17:42:56 1175
原创 深度学习模型--注意力机制(Attention Mechanism)
注意力机制(Attention Mechanism)是深度学习领域中的一种重要技术,最初在自然语言处理(NLP)任务中被提出和应用,如机器翻译、文本摘要等。
2024-04-05 07:00:00 682
原创 梦想编码:0基础解锁IT世界的无限可能
在这个全球数字化的舞台上,无论你对代码、数据、网络还是云端有着怎样的梦想,IT行业都有一个你的位置,不仅能让你追逐技术的前沿,还能让你的钱包鼓起来。
2024-04-04 23:32:21 485
原创 深度学习模型--残差网络(ResNet)
残差网络通过残差学习的创新设计,成功地解决了深度学习中的关键挑战,允许神经网络达到前所未有的深度,极大地提高了深度神经网络在各种视觉任务上的性能。
2024-04-04 14:00:00 723
原创 深度学习模型--自编码器(Autoencoder)
自编码器(Autoencoder)是一种用于无监督学习的人工神经网络,旨在通过将输入编码成一个低维表示,然后再从这个表示重构输出,以此来学习数据的有效表示(即编码)。
2024-04-03 18:30:00 373
原创 深度学习模型--深度置信网络(DBNs)
尽管深度学习领域的研究迅速发展,引入了更多先进的网络结构,DBN仍然是理解深度学习和生成模型重要的一环,为深度学习的发展奠定了基础。
2024-04-03 14:58:49 1662 1
原创 当代深度学习模型介绍--门控循环单元(GRUs)
门控循环单元(Gated Recurrent Unit, GRU)是一种特殊的循环神经网络(RNN),类似于长短期记忆网络(LSTM),但结构上更为简化。GRU由Cho等人在2014年提出,旨在解决标准RNN在处理长序列数据时的梯度消失问题,同时尝试减少LSTM的计算复杂性。
2024-03-31 16:00:00 586 1
原创 当代深度学习模型介绍--长短期记忆网络(LSTMs)
长短期记忆网络(Long Short-Term Memory networks,简称LSTMs)是一种特殊类型的循环神经网络(RNN),它能够学习长期依赖关系。
2024-03-31 09:00:00 556 1
原创 当代深度学习模型介绍--循环神经网络(RNNs)
RNN的核心思想是利用序列的时间顺序信息。传统的神经网络输入和输出是独立的,但在RNN中,网络能够保持前一步的输出状态,并将其作为下一步的输入的一部分,这样就形成了一种内部循环。
2024-03-31 08:00:00 778 1
原创 当代深度学习模型介绍--Transformer模型
Transformer模型及其衍生体在自然语言处理(NLP)领域取得了巨大成功。这些模型之所以如此强大和革命性,主要在于它们独特的设计使其能够有效捕捉数据中的长距离依赖关系,这对于理解和生成自然语言至关重要。
2024-03-30 10:34:38 1479
原创 当代深度学习模型介绍--卷积神经网络(CNNs)
CNN能够在多个层次上捕捉到各种复杂的特征,从最基本的形状到复杂的对象(如人脸、车辆等),最终使得机器能够“看到”并理解图像内容。
2024-03-30 10:29:29 1157
原创 程序员35岁的“瓶颈期”:年龄歧视背后的真实故事
有位经验丰富的软件工程师,因为年纪大了点,在一家大公司的面试中就被告知,他们更偏好年轻的程序员,理由是他们更容易培养,对新技术更适应。
2024-03-27 12:49:02 339 1
原创 深度学习中的“正则化技术”
正则化技术在机器学习和深度学习中是避免模型过拟合的关键方法。过拟合发生在模型对训练数据学得太好,以至于它失去了泛化到未见数据上的能力。
2024-03-26 14:42:25 956
原创 深度学习中的“激活函数”
激活函数的任务是对输入信号进行某种固定的数学转换,这种转换的目的是引入非线性因素,使得神经网络可以学习和执行更加复杂的任务,比如语言翻译、图像识别等。
2024-03-26 13:48:06 1021
原创 耐克:组织文化与商业策略研究
本研究深入探讨了NIKE的组织文化、商业策略和战略选择,并分析了它们如何共同作用于推动公司的持续发展和市场领导地位。
2024-03-25 21:10:30 690
原创 深度学习架构的常见算法
典型的监督学习算法包括:卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)、深度置信网络(DBN)、自编码器(Autoencoder)、生成对抗网络(GAN)、Transformer、残差网络(ResNet)、注意力机制(Attention Mechanism)。
2024-03-25 20:52:07 481
原创 深度学习模型的发展--从感知机到NLP
感知机模型的提出虽然只是深度学习历史上的一个起点,但它引发的思考和后续的技术演进,不仅极大地推动了人工智能领域的发展,也对科技和社会产生了深远的影响。
2024-03-22 12:45:31 925
原创 深度学习模型的基础--感知机
感知机的基本思想是模仿人脑神经元的工作原理,通过输入信号的加权和,加上一个偏置项,然后通过一个激活函数来决定是否激活该神经元,输出信号。
2024-03-22 12:20:43 821
原创 AI大模型学习的数学基础
在当前技术环境下,AI大模型学习不仅要求研究者具备深厚的数学基础和编程能力,还需要对特定领域的业务场景有深入的了解。
2024-03-21 17:05:16 756 2
基于YOLOv5的烟雾火焰检测算法研究
2024-04-28
制药公司QC顶岗实习专题报告
2024-04-28
新沂市健儿乐药店销售专员实习专题报告
2024-04-28
GMP生产车间操作员顶岗实习专题报告
2024-04-28
上海贝德口腔医院健康专员岗位实习专题报告
2024-04-28
混改背景下员工持股计划实施效果研究
2024-04-28
<论文>再保险统计分析系统的设计与实现
2024-03-26
<论文>搜索引擎安全功能和安全保证的研究及应用
2024-03-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人