- 博客(5)
- 资源 (2)
- 收藏
- 关注
原创 机器学习之ROC曲线理解
ROC曲线1、roc曲线曲线的坐标分别为真正例率(TPR)和假正例率(FPR),定义如下:真正例的个数是实际值为正例被预测成为正例的值得个数,TPR是预测结果中真正例占实际值中正例的比例;反正例的个数是实际值为反例被预测成为正例的值得个数,FPR是预测结果中反正例占实际值中的反例的比例;很多学习器是为测试样本是产生一个实值或概率预测,然后将这个预测值与一个分类阈值进行比较,若大于阈值分...
2019-04-24 14:57:52 6634
原创 机器学习之xgboost算法
xgboost集成思想xgboost可以和决策树结合在一起,一个分类器效果不好,可以考虑多个分类器,要求每多加一个分类器,分类的效果更好。xgboost基本原理每加一棵树的时候整体效果提升,整体效果更好在原有的模型上面加上一颗新树使得预测效果更好f函数是把树拆分成结构部分q和叶子权重部分w损失函数:构建决策树的时候希望树越少越好,这里用r约束T的个数,加上L2正则惩罚项xgbo...
2019-04-23 14:19:44 353
原创 机器学习之AMIMR模型
使用AMIMR模型必须具备的条件平稳性:要求经由样本时间序列所得到的拟合曲线在未来的一段时期内仍能顺着现有的形态“惯性”地延续下去。平稳性要求序列的均值和方差不变。严平稳:表示分布不随时间的改变而改变,比如正态,无论怎么取,都是期望为0,方差为1弱平稳:期望与相关系数(依赖性)不变,未来某一时刻t的值Xt依赖它过去的信息。差分法差分法:时间序列在t与t-1时刻的差值一阶差分:在原数据...
2019-04-22 17:17:24 1136
原创 机器学习之决策树学习笔记
决策树一颗决策树重要组成部分,分为根节点、非叶子节点,叶子节点,分支。根节点:第一个节点非叶子节点(决策点):代表测试的节点,对数据属性的测试分支:代表测试的条件叶子节点:代表分类后所获得的分类标记,最后的结果决策树的构造过程:构造决策树的过程分为训练阶段和测试阶段;训练阶段需要从给定的训练集数据中构造一颗决策树;测试阶段是将测试数据在构造出的决策树上进行测试。那重点问题就来了,如...
2019-04-18 14:26:22 746
原创 python时间序列股票预测‘20161209’报错的原因
股票预测时间报错股票预测模型中,创建了ARIMA模型,需要对数据进行预测。股票预测模型中,创建了ARIMA模型,需要对数据进行预测。使用predict()方法的时候,pred = result.predict(‘2014-06-09’,‘2016-12-09’,dynamic=True,typ=‘levels’);运行结果报错,‘The end argument could not be ...
2019-04-18 09:59:13 5758 12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人