- 博客(159)
- 资源 (8)
- 收藏
- 关注
原创 黑马一站制造数仓实战2
数据血缘追踪:简单来讲可以这样理解,我们最终给业务诚信的是一能直接使用的一张业务表,但是它的来源有很多,如果有一张来源表出问题了,我们希望能够快速准确地定位到问题,并清楚它的危害范围。属性功能:指定AM为每个Container申请的最小内存,默认为1G,申请不足1G,默认分配1G,值过大,会导致资源不足,程序失败,该值越小,能够运行的程序就越多。维度模型:从分析决策的需求出发构建模型,为分析需求服务,重点关注用户如何更快速的完成需求分析,具有较好的大规模复杂查询的响应性能。
2024-05-31 23:12:55 1137
原创 黑马一站制造数仓实战3
重点关注:dw.ods.meta_data.tablenames.txt:存储了整个ODS层的表的名称。- 修改1:auto_create_hive_table.cn.itcast.EntranceApp.py。- TableMeta.py:Oracle表的信息对象:用于将表的名称、列的信息、表的注释进行封装。- ColumnMeta.py:Oracle列的信息对象:用于将列的名称、类型、注释进行封装。- - - - 表名、表的注释、表在HDFS上的路径、Schema文件在HDFS上的路径。
2024-05-31 23:12:49 697
原创 黑马一站制造数仓实战4
本次数据来源于Oracle数据库,没有具体的ETL的需求,可以直接将ODS层的数据写入DWD层。- 遍历表名,对每张表调用自动化建表的方法:数据库名称、表的名称、None【不分全量或者增量】- 问题5:Oracle中的字段类型如果与Hive中的类型不一致怎么办?- 抽取目标:将ODS层中每张表的数据抽取到DWD层对应的数据表中。- 建表需求:将ODS层中的每一张表创建一张对应的DWD层的表。step1:DWD层的数据库名称是什么,建库的语法是什么?- 问题6:怎么获取Oracle的表的信息的?
2024-05-31 23:12:41 793
原创 黑马一站制造数仓实战5
油站类型、油站名称、油站编号、客户编号、客户名称、省份、城市、县区、油站状态、所属公司。- org_employee:员工信息表【员工id、员工编码、员工名称、用户系统id】需求:构建服务网点维度表,得到服务网点id、网点名称、网点所属的地理区域、服务网点状态等。需求:构建油站维度表,得到油站id、油站名称、油站所属的地理区域、所属公司、油站状态等。org_position:岗位信息表【岗位id、岗位编码、岗位名称、部门id】org_organization:部门信息表【部门id、部门编码、部门名称】
2024-05-31 23:11:41 892
原创 黑马一站制造数仓实战6
功能:存储每个事实主题需要的事务事实数据以及轻度聚合的结果,供ST层基于DWS层进行统计聚合得到最终每个主题的指标。- 目标需求:基于基础的时间、受理方式、来电类型等事实维度统计工单数量、电话数量、回访数量、投诉数量等。- 客户回访事实指标:满意个数、不满意个数、态度满意个数、响应速度的满意个数、技术满意个数。目标需求:基于油站信息及设备数据构建油站主题事实的油站个数、停用个数、新增个数、设备个数等。- 需求:按照一站制造的业务主题的划分需求,构建每个主题的DWB层的数据。
2024-05-31 23:10:55 981
原创 Python入学测试题 江苏某线下培训机构出题
中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。3. 题目:输入两个正整数m和n,求其最大公约数和最小公倍数。为检测自身的情况,请认真作答,不要进行上网搜答案。1. 什么是极大似然估计?2. 二维数组中的查找。5.导数的定义是什么?
2024-01-04 12:01:20 481 1
原创 基于Spring Boot+Vue.js的停车场收费管理系统 需求分析
1.1.3 车辆入场时,显示一个含有车辆基本信息(车牌、车辆类型(小型车/大型车)、入场时间、收费类型(是否为会员)、收费员、入场照片)的对话框,显示抬杆动画,将信息写入数据库。如图所示,可以不通过底色识别新能源车牌,判断出省份和城市代码(如粤B)后有6位即可认为是新能源车,如果第一位是D或F则是小型车,最后一位是D或F是大型车。显示一个含有车辆基本信息(车牌、车辆类型、入场时间、出场时间、缴费金额、是否为会员、收费员、入场照片、出场照片)的对话框,显示抬杆动画,将信息写入数据库。
2023-12-14 16:08:32 362
原创 黑马一站制造数仓实战1
Docker是一个开源的应用容器引擎,使用GO语言开发,基于Linux内核的cgroup,namespace,Union FS等技术,对应用程序进行封装隔离,并且独立于宿主机与其他进程,这种运行时封装的状态称为容器。通过对应用组件的封装,分发,部署,运行等生命周期的管理,达到应用组件级别的一次封装,多次分发,到处部署。step6:如果为维修或者改造服务,需要向服务站点申请物料,物料到达,实施结束,则服务完成。container模式:第一个容器构建一个独立的虚拟网络,其他的容器与第一个容器共享网络。
2023-12-01 20:48:37 424
原创 Spark 9:Spark 新特性
由于缺乏或者不准确的数据统计信息(元数据)和对成本的错误估算(执行计划调度)导致生成的初始执行计划不理想,在Spark3.x版本提供Adaptive Query Execution自适应查询技术,通过在”运行时”对查询执行计划进行优化, 允许Planner在运行时执行可选计划,这些可选计划将会基于运行时数据统计进行动态优化, 从而提高性能.2. 动态分区裁剪可以让我们更好的优化运行时分区内数据的量级. 通过动态的谓词下推来获取传统静态谓词下推无法获得的更高过滤属性, 减少操作的分区数据量以提高性能.
2023-10-09 22:31:27 1128
原创 Spark 8:Spark SQL 执行流程、执行引擎
相当于构建了一个以MetaStore服务为元数据,Spark为执行引擎的数据库服务,像操作数据库那样方便的操作SparkSQL进行分布式的SQL计算。DataFrame:100% 是二维表结构,可以被针对SparkSQL的自动优化,依赖于:Catalyst优化器。而SparkSQL会对写完的代码,执行“自动优化”, 以提升代码运行效率,避免开发者水平影响到代码执行效率。RDD的运行会完全按照开发者的代码执行, 如果开发者水平有限,RDD的执行效率也会受到影响。SQL提交后,底层运行的就是Spark任务。
2023-09-28 11:22:37 385
原创 Spark 6:Spark SQL DataFrame
DataFrame和RDD都是:弹性的、分布式的、数据集。在数据层面上,Column对象记录列数据,Row对象记录行数据。DataFrame同样是分布式数据集,有分区可以并行计算,和RDD不同的是,DataFrame中存储的数据结构是以表格形式组织的,方便进行SQL计算。SparkSQL 和 Hive同样,都是用于大规模SQL分布式计算的计算框架,均可以运行在YARN之上,在企业中广泛被应用。DataFrame对象可以从RDD转换而来,都是分布式数据集,其实就是转换一下内部存储的结构,转换为二维表结构。
2023-09-05 17:20:59 694
原创 Spark 7:Spark SQL 函数定义
UDF定义支持2种方式, 1:使用SparkSession对象构建. 2: 使用functions包中提供的UDF API构建. 要注意, 方式1可用DSL和SQL风格, 方式2 仅可用于DSL风格。udf对象 = sparksession.udf.register(参数1,参数2,参数3)udf对象: 返回值对象,是一个UDF对象,可用于DSL风格。udf对象: 返回值对象,是一个UDF对象,可用于DSL风格。udf对象 = F.udf(参数1, 参数2)参数2:被注册成UDF的方法名。
2023-08-26 09:29:10 646
原创 Spark知识点总结
1. Spark支持哪几种运行模式?:在这种模式下,Spark在单个机器上运行。所有的Spark操作都在一个单独的JVM进程中进行。这种模式适合开发和测试,但不适合处理大规模的数据。:在集群模式下,Spark可以分布在多个机器上运行,从而处理大规模的数据。:这是Spark自带的集群管理系统。在Standalone模式下,你需要手动启动Spark主节点和工作节点。:YARN是Hadoop的资源管理系统。
2023-08-04 18:14:59 382
原创 Hadoop知识点总结
Spark是一种通用的大数据处理框架,它提供了比MapReduce更高级的计算模型,如RDD和DataFrame,以及丰富的计算库,如MLlib和GraphX。使用Spark作为Hive的计算引擎可以实现内存级的计算,大大提高了查询速度,特别是对于迭代式的数据处理任务。每个队列都有固定的资源容量,当队列的资源没有被完全使用时,空余的资源可以被其他队列动态抢占。然而,由于它的计算模型相对固定,且每个任务都需要读写磁盘,因此在处理复杂查询和交互式查询时,性能可能不尽如人意。
2023-08-04 17:25:24 1031 1
原创 Spark 5:Spark Core 内核调度
Spark在1.1以前的版本一直是采用Hash Shuffle的实现的方式,到1.1版本时参考Hadoop MapReduce的实现开始引入Sort Shuffle,在1.5版本时开始Tungsten钨丝计划,引入UnSafe Shuffle优化内存及CPU的使用,在1.6中将Tungsten统一到Sort Shuffle中,实现自我感知选择最佳Shuffle方式,到的2.0版本,Hash Shuffle已被删除,所有Shuffle方式全部统一到Sort Shuffle一个实现中。该参数就代表了可以重试。
2023-07-31 10:22:33 189
原创 Spark 4:Spark Core 共享变量
分布式集合RDD和本地集合进行关联使用的时候,降低内存占用以及减少网络IO传输,提高性能。分布式代码执行中,进行全局累加。广播变量解决了什么问题?累加器解决了什么问题?
2023-07-17 17:06:41 515
原创 Spark RDD练习 算子函数操作
6、创建一个 RDD(由字符串组成)list["xiaoli", "laoli", "laowang", "xiaocang", "xiaojing", "xiaokong"],# 3. 创建一个元素为 1-5 的RDD,运用 flatMap创建一个新的 RDD,新的 RDD 为原 RDD 每个元素的 平方和三次方 来组成 1,1,4,8,9,27…# 7、创建一个 RDD数据为List[10,10,2,5,3,5,3,6,9,1],对 RDD 中元素执行去重操作。
2023-07-01 19:40:28 701
原创 知乎50道SQL题 分享
values ('01', '赵雷', '1990-01-01', '男');values ('03', '孙风', '1990-05-20', '男');values ('05', '周梅', '1991-12-01', '女');values ('06', '吴兰', '1992-03-01', '女');values ('07', '郑竹', '1989-07-01', '女');values ('08', '王菊', '1990-01-20', '女');
2023-06-13 21:59:59 1157
原创 Spark 3:Spark Core RDD持久化
CheckPoint是重量级保存RDD数据,是集中存储,只能存储在硬盘(HDFS)上,设计上是安全的(不保留RDD血缘关系)。Cache是轻量化保存RDD数据,可存储在内存和硬盘,是分散存储,设计上数据是不安全的(保留RDD血缘关系)。Cache性能更好,因为是分散存储,各个Executor并行执行,效率高,可以保存到内存中(占内存),更快。CheckPoint比较慢,因为是集中存储,涉及到网络IO,但是存储到HDFS上更加安全(多副本)。RDD 的CheckPoint。RDD 的数据是过程数据。
2023-05-25 23:05:30 685 2
原创 Spark 2:Spark Core RDD算子
RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,代表一个不可变、可分区、里面的元素可并行计算的集合。内存:尽管mapPartitions在性能上有优势,但需要注意的是,mapPartitions在处理大量数据时可能会导致内存不足,因为它需要在每个分区上一次性处理所有数据。转换算子的返回值100%是RDD, 而Action算子的返回值100%不是RDD。Distributed:RDD中的数据是分布式存储的,可用于分布式计算。
2023-05-18 08:01:49 405
原创 Hadoop 4:Hive
Apache Hive是一款建立在Hadoop之上的开源数据仓库系统,可以将存储在Hadoop文件中的结构化、半结构化数据文件映射为一张数据库表,基于表提供了一种类似SQL的查询模型,称为Hive查询语言(HQL),用于访问和分析存储在Hadoop文件中的大型数据集。也就是数据驱动决策的制定。元数据(Metadata),又称中介数据、中继数据,为描述数据的数据(data about data),主要是描述数据属性(property)的信息,用来支持如指示存储位置、历史数据、资源查找、文件记录等功能。
2023-05-13 09:36:22 378
原创 Hadoop 3:YARN
通过为每个组织分配专门的队列,然后再为每个队列分配一定的集群资源,这样整个集群就可以通过设置多个队列的方式给多个组织提供服务了。队列内部又可以垂直划分,这样一个组织内部的多个成员就可以共享这个队列资源了,在一个队列内部,资源的调度是采用的是先进先出(FIFO)策略。现在,如果B用户在其他作业仍在运行时开始第二个作业,它将与B的另一个作业共享其资源,因此B的每个作业将拥有资源的四分之一,而A的继续将拥有一半的资源。简单通俗点来说,就是一个个队列有独立的资源,队列的结构和资源是可以进行配置的。
2023-05-08 06:15:00 509
原创 黑马在线教育数仓实战9
请假的开始时间(请假表.begin_time) = 上课的开始时间(morning_begin_time |afternon_begin_time | evening_begin_time)课程表.class_date between 作息表.use_begin_date and 作息表.use_end_date。
2023-05-05 04:45:00 632
原创 Hadoop 2:MapReduce
Spill阶段:当内存中的数据量达到一定的阀值的时候,就会将数据写入本地磁盘,在将数据写入磁盘之前需要对数据进行一次排序的操作,如果配置了combiner,还会将有相同分区号和key的数据进行排序。key是每一行的起始位置偏移量,value是本行的文本内容。然后是Reduce聚合阶段,通过程序对并行的结果进行最终的汇总计算,得出最终的结果。所谓“分而治之”就是把一个复杂的问题,按照一定的“分解”方法分为等价的规模较小的若干部分,然后逐个解决,分别找出各部分的结果,然后把各部分的结果组成整个问题的最终结果。
2023-05-02 03:15:00 1266
原创 Spark 1:Spark基础入门
Hadoop中的MR中每个map/reduce task都是一个java进程方式运行,好处在于进程之间是互相独立的,每个task独享进程资源,没有互相干扰,监控方便,但是问题在于task之间不方便共享数据,执行效率比较低。Task:被分配到各个 Executor 的单位工作内容,它是Spark 中的最小执行单位,一般来说有多少个 Paritition(物理层面的概念,即分支可以理解为将数据划分成不同部分并行处理),就会有多少个 Task,每个 Task 只会处理单一分支上的数据。
2023-05-01 17:33:35 814
原创 Hadoop 1:Apache Hadoop、HDFS
HDFS中的文件在物理上是分块存储(block)的,默认大小是128M(134217728),不足128M则本身就是一块(块的大小就等于文件本身的大小)。也可以说大数据首先要解决的问题就是海量数据的存储问题。对于每个块,namenode返回具有该块所有副本的datanode位置地址列表,并且该地址列表是排序好的,与客户端的网络拓扑距离近的排序靠前。因为数据以管道的方式,顺序的沿着一个方向传输,这样能够充分利用每个机器的带宽,避免网络瓶颈和高延迟时的连接,最小化推送所有数据的延时。
2023-04-27 09:00:00 975
原创 黑马在线教育数仓实战7
hive.merge.mapfiles : 是否开启map端小文件合并 (适用于MR只有map没有reduce, map输出结果就是最终结果) hive.merge.mapredfiles : 是否开启reduce端小文件合并操作 hive.merge.size.per.task: 合并后输出文件的最大值 ,默认是128M hive.merge.smallfiles.avgsize: 判断输出各个文件平均大小, 当这个大小小于设置值, 认为出现了小文件问题,需要进行合并操作。思考: 小文件有什么影响呢?
2023-04-22 22:40:43 497
原创 AI技术以及其今后发展
对于IT/计算机/软件专业的学生来说,AI的发展既带来了机会,也带来了挑战。3,你听说过最近的 GPT,new bing, bard,AI 绘画, AI 编程工具么?未来的软件工程师需要具备深厚的AI知识,同时掌握软件工程的基本原则。近期AI成为热点话题, GPT, new bing, bard,AI 绘画等 AI 编程工具引发大量讨论。5,作为一个 IT / 计算机 / 软件专业的学生, 如果 AI 可以帮助人类快速编程序, 那么这些专业的大学毕业生的职业发展是更好了,还是有更大的挑战?
2023-04-09 12:57:31 733
原创 美国高速公路信号灯控制项目的大致逻辑和步骤 智慧公路设计
此外,在纽约开会的时候,项目方问开发人员的那个某某配置文件放哪里合适的问题,这个问题开发人员想了一下应该不由开发人员回答,而是由美国那边设计,因为开发人员并不知道具体是什么配置,当然美国如果不规定的话开发人员这边也可以根据情况设计,比如说如果是key-value型的配置即可放在redis中。左边是工程的目录结构,有很多java文件,即要写的代码,需要按照Spring Boot的要求放在合适的文件夹下;
2023-04-08 09:15:00 226
原创 黑马在线教育数仓实战4
思考: 在统计的过程中, 比如以年统计, 得到一个新的年的统计结果, 那么在DWS层表中是不是还有一个历史的结果呢?要求: 此脚本能够实现自动获取上一天的日期数据, 并且还支持采集指定日期下数据。将shell脚本配置到ooize中, 从而实现自动化调度。将shell脚本放置到ooize中,完成自动化调度操作。最后,将shell脚本配置到oozie (省略)将shell脚本设置到oozie中(省略) 只需要采集新增的这一天的数据即可。思考4: 如何编写shell脚本呢?
2023-04-06 17:59:01 617
原创 黑马在线教育数仓实战3
在进行数据统计分析的时候, 一般来说, 第一次统计分析都是全量统计分析 而后续的操作, 都是在结果基础上进行增量化统计操作。此错误是sqoop在运行导出的时候, 一旦执行MR后, 能够报出的唯一的错误: 标识导出失败。解决方案: 将mysql中的from_url字段的varchar长度改的更长一些即可。 目的: 从hive的DWS层将数据导出到mysql中对应目标表中。如何查看MR的日志呢? yarn: 用于资源的分配 (资源: 内存 CPU) 思考: 在创建表的时候, 需要考虑那些问题呢?
2023-03-30 10:00:00 787
原创 黑马在线教育数仓实战2
今日内容:教育项目数仓分层 (知道, 明确每一层的作用)数仓工具的相关的使用 (操作)2.1 HUE相关的使用 (操作HDFS HIVE,OOZIE)2.2 sqoop的基本使用操作访问咨询主题看板实操3.1 需求分析 (务必掌握 -- 最好能够自己分析的出来, 如果不行, 先理解掉)3.2 建模分析 (务必掌握 -- 最好能够自己分析的出来, 如果不行, 先理解掉)3.3 建模操作。
2023-03-27 09:30:00 847
原创 黑马在线教育数仓实战1
1. 教育项目的架构说明项目的架构:基于cloudera manager大数据统一管理平台, 在此平台之上构建大数据相关的软件(zookeeper,HDFS,YARN,HIVE,OOZIE,SQOOP,HUE...), 除此以外, 还使用FINEBI实现数据报表展示各个软件相关作用:zookeeper: 集群管理工具, 主要服务于hadoop高可用以及其他基于zookeeper管理的大数据软件HDFS: 主要负责最终数据的存储YARN: 主要提供资源的分配。
2023-03-23 22:07:23 987 3
原创 软件质量保证与测试 课程设计 测试报告 缺陷报告撰写方法
原因分析及纠正预防措施:(对测试中发现的一些问题分析其产生原因采取的预防纠正措施及这些措施实施的情况)2.没有任何错误检测机制,输入负数、不符合规定类型的数据都会出现系统故障和崩溃的问题。经过黑盒测试和白盒测试,程序发现了10个可优化的漏洞和细节,希望程序员改善。遗留错误说明:(测试后仍然遗留下来未解决的错误及其说明)2、程序中对不正确的数据没有异常处理,应该在代码中完善。详细描述:程序是DOS界面,没有图形用户界面。1、程序是DOS界面,没有图形用户界面。解决时间:2020-06-02。
2023-03-20 10:13:21 632
原创 MySQL 13:MySQL优化
通过创建合适的索引,可以减少Filesort的出现,但在某些情况下,条件限制不能使Filesort消失,所以需要加快Filesort的排序操作。show processlist:该命令查看当前MySQL在进行的线程,包括线程的状态、是否锁表等,可以实时地查看 SQL 的执行情况,同时对一些锁表操作进行优化。第一种是通过对返回的数据进行排序,也就是通常所说的filesort排序,所有不直接通过索引返回排序结果的排序,都称为filesort排序。在所有的组中,id的值越大,优先级越高,越先执行。
2023-03-14 20:37:09 207
原创 MySQL 12:MySQL日志
如果是ROW,由于是对全表进行更新,也就是每一行记录都会发生变更,ROW 格式的日志中会记录每一行的数据变更。STATEMENT:该日志格式在日志文件中记录的都是SQL语句(statement),每一条对数据进行修改的SQL都会记录在日志文件中,通过Mysql提供的mysqlbinlog工具,可以清晰的查看到每条语句的文本。客户端的所有操作语句都记录在查询日志中,但二进制日志中不包含查询数据的SQL语句。默认情况下,查询日志记录是禁用的。MySQL 的日志分为错误日志、二进制日志、查询日志、慢查询日志。
2023-03-09 09:59:02 290
原创 创业项目 大学生课程辅导app创业计划
我们的团队有6人,计划初期融资10万元人民币,6人保留公司的至少60%股权。该行业刚刚起步就非常火爆,现在仍然是中学生备战高考的必备工具,市场容量巨大,并有向更大领域和功能扩张的趋势。管理思想:以质量管理理论为指导,要求人员和产品必须不断完善、学习、成长,同时对经营过程彻底进行再思考和再设计,以便在业绩衡量标准(如成本、质量、服务和速度等)上取得重大突破,完成企业再造。后来,该公司又推出了“猿辅导”等在线辅导课程功能,成为了行业的独角兽,仅3年时间,估值即达到3.6亿美元(约23亿人民币)。
2023-03-01 09:50:42 889
Python钉钉创建待办任务和个人待办任务,接口已调试成功
2024-10-28
Python机器学习研究公司的财务表现和业务运营 评估研发投资的效果、市场表现、财务健康状况和增长潜力 建立预测模型
2024-10-28
美国车险是否为欺诈索赔机器学习实验 SMOTE上采样方法 随机森林网格搜索 条形图饼图散点图可视化数据分析
2024-10-28
Python Grad-CAM通道注意力机制 ResNet残差网络 图像天气分类 绘制注意力图热图 torch 有图像天气数据集
2024-05-31
Python电商用户画像 kmeans聚类 商品特征提取 按月份统计客户人数
2024-05-31
某高校选课记录数据集 朴素贝叶斯KNN单词向量化 预测课程类别
2024-03-05
cox回归 随机生存森林 CoxPH calibration置信度曲线图 泰坦尼克号数据集
2024-01-04
浏览器显示数据库中数据的条形图柱状图 前后端分离vue.js+spring boot 计算机软件工程课程设计毕业设计 前端 后端
2023-08-30
IBM data warehouse professional certificate 数据仓库专业认证测试题答案 截图
2023-08-04
Java Spring Cloud eureka feign gateway nacos 微服务分布式 学习资料&项目源码&教程
2023-08-03
Python pymysql 经纬度坐标位置 计算 kmeans 欧氏距离 曼哈顿距离 计算机课程毕设
2023-08-03
Python计算用户输入的一系列跑步时间的统计数据,包括总天数、总分钟数、平均时间以及每公里的平均时间 绘制UML流程图
2023-06-01
Python预测电池容量 具有自注意力机制self attention的双向长短时记忆网络Bi-LSTM tensorflow
2023-05-19
USB Q2406A MODEM USB GPRS GSM Python代码API手机发送短信 企业短信通驱动+配置文档+说明书
2023-05-05
交通事故视频数据集 异常驾驶行为视频 高速公路摄像头监控视频 提供Python下载视频的代码 逐帧分割成图像保存在本地
2023-05-02
DES加密算法 C++ Visual Studio 代码实现 课程设计 信息安全概论 课设作业
2023-05-01
商店商品管理系统 大学生课程设计 课设作业 Java Web JDBC MySQL jsp
2023-05-01
JavaWeb教材管理系统 课程设计 计算机课设 权限管理 html css jsp jdbc Java web servlet
2023-05-01
英雄对战游戏设计 漫威超英对战 Visual Studio C++面向对象程序设计课程设计 STL库 软件设计与体系结构
2023-05-01
小型计算器程序 Visual C++ MFC 面向对象程序设计课程设计 课设作业
2023-05-01
yolov论文 华为杯ICT大赛参考论文 yolov3 yolov4 yolov5
2023-05-01
ChatGPT接入项目实例 Python 调用davinci 002 api 示例 text-davinci-002
2023-04-30
计算机网络 WinSock socket socketclient通信套接字 C++课程设计课设作业 visual studio
2023-04-30
计算机图形学基础教程 孔令德 Visual C++版 课后习题代码实现 计算机辅助设计课设作业课程设计
2023-04-30
C++ MFC程序设计 旋转三角形动画 折线道路 计算机图形学 计算机辅助设计 程序设计 课程设计
2023-04-30
C++ MFC程序设计 Bezier B样条 Hermite曲线 计算机图形学 计算机辅助设计 程序设计 课程设计
2023-04-30
进程管理系统设计 允许n个进程并发运行的进程管理模拟系统 进程创建、撤销、阻塞、唤醒 同步控制 操作系统课程设计 c++课设
2023-04-30
PL/0语言编译程序改写 利用 Flex 及 Bison 工具重写 C 语言编写的 PL/0 编译器 编译原理技术课程设计作业
2023-04-30
网络软件开发 基于web的高校教学考试成绩管理系统 Java html jsp tomcat service项目 MySQL数据
2023-04-30
Java 办公OA系统员工信息管理上传头像增删改查登录注销权限分配 redis缓存 前端Vue后端Spring Boot毕业设计
2023-04-30
西安市公交车线路各站点经纬度发车时刻表数据分析 folium画图在html可视化公交车站台路线 Python
2023-04-30
Android高速公路病害监测系统 前端Android后端Spring Boot 计算机科学与技术软件工程毕业设计课程设计
2023-04-30
Android入门学习项目 Android Studio所有常用组件详细使用方法 代码实现 Java XML app开发
2023-04-30
2022 深圳杯 数学建模 A题 破除“尖叫效应”与“回声室效应”,走出“信息茧房” Python代码
2023-04-30
Python 200辆出租车1天的数据 2014 04 09 数据说明 显示数据 用DBSCAN算法发现上下车热点 folium
2023-04-30
tensorflow certificate 深度学习开发者认证 Google证书 5道建模问题 文本分类图像分类时序预测 参考
2023-04-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人