过两天要讲优化最大流算法,今天抓紧先看看两个最基本的最大流算法。
网络流可以形象地理解为“水流”,所谓最大流问题,就是水要从源点出发流经一个有向图到达汇点,问能流到汇点的最大水流量,当然有向图的每条边有边权(容量),如果水要从某条路到达汇点,显然水流量不能超过这条路上的最小边权(木桶效应)。
图上能够使总流量变大的路称为增广路。
通过求取最短增广路不断更新最大流的算法就是EK算法,而对图分层并用dfs回溯寻找增广路的算法是Dinic算法。
这是题目
这是代码:
Dinic算法,时间复杂度O(NNM)
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cstdlib>
#include <queue>
#include <map>
#define ll long long
using namespace std;
const int maxn=1e4+5;
const int maxm=1e5+5;
const int inf = 2e9;
int p=1,h[maxn<<1],nxt[maxm<<1],w[maxm<<1],v[maxm<<1],depth[maxn],nh[maxn<<1];
int n,m;
bool vis[maxm<<1];
void add(int a,int b,int c)
{
p++;
v[p]=b;
w[p]=c;
nxt[p]=h[a];
h[a]=p;
}
bool bfs(int s,int t)
{
memset(depth,0x7f, sizeof(depth));
queue<int>q;
depth[s]=0;
for(int i=1;i<=n;i++)nh[i]=h[i];
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=nxt[i])
{
int to=v[i];
if(depth[to]>inf && w[i])
{
depth[to]=depth[u]+1;
q.push(to);
}
}
}
if(depth[t] < inf)return 1;
return 0;
}
int dfs(int x,int t,int limit)
{
if(!limit || x==t)return limit;
int flow=0,f=0;
for(int i=nh[x];i;i=nxt[i])
{
nh[x]=i;//一个小优化,记录对于这个点已经处理到了哪条边,因为过程中对于每条边都充分发挥了其价值,这样可以减少遍历次数
int to=v[i];
if(depth[to]==depth[x]+1 && (f=dfs(to,t,min(limit,w[i]))))
{
flow+=f;
limit-=f;
w[i]-=f;
w[i^1]+=f;
if(!limit)break;
}
}
return flow;
}
int dinic(int s,int t)
{
int maxflow=0;
while(bfs(s,t))
{
maxflow+=dfs(s,t,inf);
}
return maxflow;
}
int getnum()
{
int num=0;
bool f=1;
char c=getchar();
while (!isdigit(c))
{
if(c=='-')f=0;
c=getchar();
}
while(isdigit(c))
{
num=num*10+c-'0';
c=getchar();
}
return f ? num : -num;
}
int main()
{
n=getnum(),m=getnum();
int st=getnum(),en=getnum();
for(int i=1;i<=m;i++)
{
int a=getnum(),b=getnum(),c=getnum();
add(a,b,c);
add(b,a,0);
}
printf("%d",dinic(st,en));
return 0;
}
EK算法,时间复杂度O(NMM)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cstdlib>
#include <queue>
#include <map>
#define ll long long
using namespace std;
const int maxn=1e5+5;
const int maxm=1e5+5;
int p=1,h[maxn<<1],nxt[maxm<<1],w[maxm<<1],v[maxm<<1];
bool vv[maxn<<1];
int n,m,s,t;
struct node
{
int edge;
int u;
}pre[maxn<<1];
void add(int a,int b,int c)
{
p++;
v[p]=b;
w[p]=c;
nxt[p]=h[a];
h[a]=p;
}
bool bfs()
{
queue<int>q;
memset(vv,0,sizeof(vv));
memset(pre,-1,sizeof(pre));
vv[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i>=1;i=nxt[i])
{
int to=v[i];
if(!vv[to]&&w[i]>0)
{
pre[to].edge=i;
pre[to].u=u;
if(to==t)return 1;
vv[to]=1;
q.push(to);
}
}
}
return 0;
}
int EK()
{
int ans=0;
while(bfs())
{
int mi=1<<30;
for(int i=t;i!=s;i=pre[i].u)
{
mi=min(mi,w[pre[i].edge]);
}
for(int i=t;i!=s;i=pre[i].u)
{
w[pre[i].edge]-=mi;
w[pre[i].edge^1]+=mi;
}
ans+=mi;
}
return ans;
}
int getnum()
{
int num=0;
bool f=1;
char c=getchar();
while (!isdigit(c))
{
if(c=='-')f=0;
c=getchar();
}
while(isdigit(c))
{
num=num*10+c-'0';
c=getchar();
}
return f ? num : -num;
}
int main()
{
n=getnum(),m=getnum(),s=getnum(),t=getnum();
for(int i=1;i<=m;i++)
{
int a=getnum(),b=getnum(),c=getnum();
add(a,b,c);
add(b,a,0);
}
printf("%d",EK());
return 0;
}