题目描述:
给定一个长度为 n
的 0 索引整数数组 nums
。初始位置为 nums[0]
。
每个元素 nums[i]
表示从索引 i
向前跳转的最大长度。换句话说,如果你在 nums[i]
处,你可以跳转到任意 nums[i + j]
处:
0 <= j <= nums[i]
i + j < n
返回到达 nums[n - 1]
的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]
。
示例 1:
输入: nums = [2,3,1,1,4] 输出: 2 解释: 跳到最后一个位置的最小跳跃数是 2 ,从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
示例 2:
输入: nums = [2,3,0,1,4] 输出: 2
提示:
1 <= nums.length <= 104
0 <= nums[i] <= 1000
- 题目保证可以到达
nums[n-1]
思路:
①首先是判断数组的长度。如果数组的长度小于或者等于1,则返回0,因为此时已经处在最后一个位置;
②每到一个位置 i 时,跳跃的范围是从 [ i+1 , i+nums[i] ] ,i+1 表示的是左边界,跳最小距离 1;i + nums [ i ] 表示右边界,跳最大距离 i + nums [ i ],每次跳跃的最优解是右边界最大,即需要最短的次数即可达到最后位置。
代码:
class Solution(object):
def jump(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
n = len(nums)
if n <= 1:
return 0
step = 1
left, right = 1, nums[0]
while right < n - 1:
for i in range(left, right + 1):
if i + nums[i] > right:
right = i + nums[i]
left = i + 1
step += 1
return step
if __name__ == "__main__":
nums = [2, 1]
a = Solution()
print(a.jump(nums))