496.Next Greater Element I
Description:
You are given two arrays (without duplicates) nums1 and nums2 where nums1’s elements are subset of nums2. Find all the next greater numbers for nums1’s elements in the corresponding places of nums2.The Next Greater Number of a number x in nums1 is the first greater number to its right in nums2. If it does not exist, output -1 for this number.
Example 1:
Input: nums1 = [4,1,2], nums2 = [1,3,4,2].
Output: [-1,3,-1]
Explanation:
For number 4 in the first array, you cannot find the next greater number for it in the second array, so output -1.
For number 1 in the first array, the next greater number for it in the second array is 3.
For number 2 in the first array, there is no next greater number for it in the second array, so output -1.Example 2:
Input: nums1 = [2,4], nums2 = [1,2,3,4].
Output: [3,-1]
Explanation:
For number 2 in the first array, the next greater number for it in the second array is 3.
For number 4 in the first array, there is no next greater number for it in the second array, so output -1.Note:
1. All elements in nums1 and nums2 are unique.
2. The length of both nums1 and nums2 would not exceed 1000.
思路:
1. 在nums2中找到nums1中的数组元素。
2. 递增角标,比较大小,直到在nums2中找到较大的元素,若没有找到则为“-1”。
代码:
public class Solution {
public int[] nextGreaterElement(int[] findNums, int[] nums) {
int[] nextNums=new int[findNums.length];
int greaterNum=0;
for(int i=0;i<findNums.length;i++){
for(int j=0;j<nums.length;j++){
if(findNums[i]==nums[j]){
if(j!=nums.length-1){
do{
greaterNum=nums[j];
if(greaterNum>findNums[i]){
nextNums[i]=greaterNum;
break;
}else if(j==nums.length-1){
nextNums[i]=-1;
}
j++;
}while(j<nums.length);
}else{
nextNums[i]=-1;
}
break;
}
}
}
return nextNums;
}
}
我这里的思路就是利用数组的角标来进行这一系列的操作。
也可以利用栈来解决这个问题:
public class Solution {
public int[] nextGreaterElement(int[] findNums, int[] nums) {
Map<Integer, Integer> map = new HashMap<>(); // map from x to next greater element of x
Stack<Integer> stack = new Stack<>();
for (int num : nums) {
while (!stack.isEmpty() && stack.peek() < num)
map.put(stack.pop(), num);
stack.push(num);
}
for (int i = 0; i < findNums.length; i++)
findNums[i] = map.getOrDefault(findNums[i], -1);
return findNums;
}
}
这样解决大大降低了算法的复杂度,此时复杂度为O(n)。
完成。