【BZOJ 4289】PA2012 Tax(技巧建图最短路)

本文深入探讨了图论中一种优化算法的实现细节,通过将无向边转换为有向边,利用差分思想和边权排序,实现了对边的最大值进行有效计算。文章详细介绍了算法步骤,并提供了完整的C++代码实现。

暴力做法:(30pts)

把每条无向边拆成两条有向边.把每条边看成一个点,对于两条从一个点出去的边 建两条有向边 边权为较大值

这样是m^2的

优化:

可以用类似差分的思想来 然后出边之间做差分 对出边的边权排序 然后相邻边之间连边(小边向大边连权值为两边权值之差的边,大边向小边连权值为0的边)

这样入边只需向他的对应边连一个权值为原边权的边即可达到去最大值的效果。

#include<bits/stdc++.h>
#define N 200005
#define ll long long
#define INF 1000000000000000
using namespace std;
template<class T>
inline void read(T &x)
{
    x=0; int f=1;
    static char ch=getchar();
    while((!isdigit(ch))&&ch!='-')  ch=getchar();
    if(ch=='-') f=-1;
    while(isdigit(ch))  x=x*10+ch-'0',ch=getchar();
    x*=f;
}
struct Edge
{
    int to,next,val;
}edge[2*N],road[8*N];
int n,m,tot=1,cnt=1,first[N],head[2*N],temp[N];
inline void addedge(int x,int y,int z)
{
    tot++;
    edge[tot].to=y; edge[tot].next=first[x]; edge[tot].val=z; first[x]=tot;
} 
inline void addroad(int x,int y,int z)
{
    cnt++;
    road[cnt].to=y; road[cnt].next=head[x]; road[cnt].val=z; head[x]=cnt;
}
inline bool cmp(const int &a,const int &b)
{
    return edge[a].val<edge[b].val;
}
int S,T;
void Build()
{
    S=1,T=2*(m+1);
    for(int i=1;i<=n;i++)
    {
        int top=0;
        for(int u=first[i];u;u=edge[u].next)    temp[++top]=u;
        sort(temp+1,temp+top+1,cmp);
        for(int j=1;j<=top;j++)
        {
            int now=temp[j],next=temp[j+1];
            if(edge[now].to==n) addroad(now,T,edge[now].val);
            if(i==1) addroad(S,now,edge[now].val);
            addroad(now^1,now,edge[now].val);   //入边和出边
            if(j<top) addroad(now,next,edge[next].val-edge[now].val),addroad(next,now,0); 
        }
    }
}
ll dis[2*N];
typedef pair<ll,int> Pair;
priority_queue<Pair,vector<Pair>,greater<Pair> > heap;
bool vis[2*N];
void Dijkstra()
{
    for(int i=2;i<=T;i++)   dis[i]=INF;
    heap.push(make_pair(0,1));
    while(!heap.empty())
    {
        int now=heap.top().second;
        heap.pop();
        if(vis[now])    continue;
        vis[now]=true;
        for(int u=head[now];u;u=road[u].next)
        {
            int v=road[u].to;
            if(dis[now]+road[u].val<dis[v])
            {
                dis[v]=dis[now]+road[u].val;
                heap.push(make_pair(dis[v],v));
            }
        }
    }
}
int main()
{
    read(n),read(m);
    for(int i=1,x,y,z;i<=m;i++) read(x),read(y),read(z),addedge(x,y,z),addedge(y,x,z);
    Build();
    Dijkstra();
    cout<<dis[T];
    return 0;
}

转载于:https://www.cnblogs.com/Patrickpwq/articles/9879497.html

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签像创、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读议:议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读议:议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值