自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1147)
  • 收藏
  • 关注

原创 干货收藏!AI应用开发避坑指南:从零开始构建AI原生应用,收藏级干货

文章揭示AI应用落地四大困境:范式跃迁、定制需求、成本压力和方法论缺失。当前处于软件工程第三次范式革命,传统开发思路已不适用。提出需构建AI原生工程体系,介绍JitAi平台的JAAP协议解决方案。强调掌握AI原生开发能力对未来竞争的重要性,呼吁技术人员学习大模型技术以抓住时代机遇。

2025-12-17 11:16:03 552

原创 建议收藏:零基础也能玩转AI大模型:提示词工程+微调+RAG实战指南

咱们今天就唠到这——总结下核心:1.不用学底层技术,懂提示词工程、微调、RAG就够;2.提示词是“设计AI的思考框架”,要结构化、迭代;3.微调是“给AI补短板”,解决模型天生的不足;4.RAG+微调是“组合拳”,解决私有数据和最新知识的问题;5.提示词工程师是高薪资岗位,应届生、转行都能冲。AI时代的风口,不是给“AI科学家”准备的,是给“AI应用工程师”准备的。你不用当“懂技术的人”,只要当“会用技术解决问题的人”,就能吃着风口的红利。

2025-12-17 11:13:31 298

原创 程序员/小白必藏:智能体(Agent)开发入门指南,从理论到实战

本文是一份智能体全面入门指南,专为零基础读者设计。从智能体基础概念讲起,对比与ChatGPT的区别,介绍Dify、扣子等低代码开发平台,拆解角色设定、记忆机制等核心能力,并通过真实案例展示变现路径。无论你是技术小白、传统开发者还是想转行AI的普通人,本文都能帮你扫清盲区,快速上手智能体开发,抓住AI时代红利机会。

2025-12-17 11:10:52 167

原创 【收藏必看】大模型工作流全解析:LLM、智能体与AI Agent谁更胜一筹?实验数据告诉你答案

文章通过实验数据对比了三种AI工作流的表现差异:LLM工作流效率高但自主性弱;智能体工作流平衡了效率和自主性;AI智能体灵活性强但消耗大。根据任务特点提供了选择建议:固定任务选LLM,需工具调用选智能体工作流,复杂决策选AI智能体。同时分享了从零到精通的大模型学习路径和资源,适合不同背景的学习者。

2025-12-17 10:55:22 396

原创 【必收藏】AI智能体(AI Agent)完全指南:从底层原理到落地实践,打造你的第一个智能体系统

文章详细介绍了AI智能体的核心概念、特征和设计方法。智能体是能代表用户独立完成任务的系统,具有LLM驱动决策、工具使用能力和安全护栏三大特征。文章从基础理论出发,讲解了智能体的设计基础(模型、工具、指令)、编排模式(单智能体和多智能体系统)以及安全护栏体系,并通过LangGraph框架提供了实践示例。智能体的本质是行动而非聊天,未来每个企业和岗位都会有属于自己的"数字助手"。

2025-12-17 10:47:06 366

原创 【深度好文】RLHF项目成功秘籍:从算法迷信到评估体系构建,收藏级技术指南

文章指出工业RLHF的成功关键不在于选择PPO、GRPO或DPO等算法,而在于构建能驱动循环的评估体系。RLHF本质是定义"好"的标准,建立偏好维度、让模型感知偏好和建立可观测性。真正的工业级RLHF是"双轨进化",同时训练policy和reward模型形成闭环。没有评估体系的RLHF只是"玄学驱动模型",注定失败。构建评估体系比选择算法更重要,是RLHF项目成功的核心。

2025-12-16 10:57:40 957

原创 一文搞懂RAG核心:语义理解与语义检索的区别与应用(建议收藏)

本文详细解析了RAG中语义理解与语义检索的区别与应用。语义理解是模型的基础能力,在智能体RAG系统中扮演核心角色,负责理解用户问题并生成工具参数;语义检索是RAG的核心技术,基于向量计算实现相关文档检索,需要向量数据库支持。两者在RAG中扮演不同角色,共同实现智能问答与生成功能。

2025-12-16 10:52:44 759

原创 【必学收藏】从零开始理解LLM:Transformer架构与数据预处理全解析

文章介绍了大语言模型(LLM)的基础知识,包括Transformer架构如何解决长文本理解和并行训练问题,以及Tokenization过程特别是BPE编码。详细讲解了Hugging Face的FineWeb训练数据预处理流程,从URL过滤、文本提取、语言过滤到质量评分、去重和隐私保护等步骤。最后指出,大模型实际上是通过统计模拟人类标注员的行为来生成内

2025-12-16 10:48:50 457

原创 【收藏级干货】Google AI Agent课程Day 1:构建能自主完成任务的数字员工系统

文章介绍了AI Agent如何从"回答问题工具"转变为能自主完成任务的"数字同事"。详细阐述了AI Agent的四大核心组件(大脑、双手、神经系统、身体与腿),五步工作循环(任务→环境→思考→行动→观测),以及企业实施的能力分层路线图。文章强调了安全治理的重要性,并提供了客户服务、销售赋能等高ROI应用场景,为企业和开发者提供了实用的行动指南。

2025-12-16 10:46:05 430

原创 收藏必备!RAG系统完全指南:从原理到落地,一篇搞定

本文详细介绍了构建高效RAG系统的11个关键模块,包括数据导入、文本分块、嵌入技术、向量存储、查询优化、检索准确性提升、检索后处理、生成过程、评估方法和复杂检索策略等。文章强调RAG系统不仅是组件堆砌,而是需要关注每一层的工程细节和最佳实践,提供了从理论到实操的完整指南,帮助读者直接将内容交给研发落地、产品验收和业务评估。

2025-12-16 10:43:11 348

原创 【干货收藏】大模型核心技术栈:LLM、ChatGPT、RAG、Agent、MCP全解析

本文系统解析了大模型技术栈:从LLM基础引擎到ChatGPT对话应用,详述RAG解决知识滞后、Function Call连接现实世界、Agent实现自主决策,以及MCP标准化工具交互。这些技术协同工作,形成完整AI系统架构,各自解决不同层面问题,推动AI向更自主、智能、通用方向发展。理解这些技术的关系与区别,有助于应用AI解决实际问题,把握AI发展脉络。

2025-12-16 10:41:08 682

原创 【必藏】Agentic AI与RAG实战指南:一文理清何时用、何时不用、何时结合

本文深入解析Agentic AI与RAG技术的本质区别与适用场景,澄清常见误解。Agentic AI核心是自主决策循环,RAG则面临"检索越多效果越差"的规模化陷阱。文章详细介绍了Context Engineering优化策略、本地模型成本优势,以及Agentic RAG最佳实践,并提供技术选型决策树,帮助开发者避开90%的技术选型陷阱,做出明智决策。---

2025-12-15 21:42:37 759

原创 【干货收藏】小白也能学会的RAG知识库质量优化指南

文章介绍了RAG知识库质量优化的评估框架和改进方法。通过retrieved_context、answer和ground_truth三个指标评估知识库效果,对比了余弦相似度和ragas框架的优缺点。提出两个改进方向:提升召回能力(优化知识切片质量、调整embedding参数)和提升回答能力(使用更强模型、优化提示词)。强调知识库优化是系统工程,需要系统性解决,而非简单调参。

2025-12-15 21:33:27 960

原创 收藏!企业AI智能体落地避坑指南:从战略到运营的全方位解析

文章揭示企业部署AI智能体面临的七大陷阱:战略失焦、数据断粮、技术冒进、安全失控、组织脱节、运维缺失和规模陷阱。强调AI智能体落地是系统工程,企业应从具体业务场景切入,做好数据基建,选择合适技术,确保安全可控,重新设计人机协作流程,建立持续运营机制,并规划规模化推广路线图,将AI智能体转化为真正的生产力。---

2025-12-15 21:23:00 632

原创 【建议收藏】小白进阶必备:RAG知识库构建实战指南与技巧

文章针对AI产品经理,阐述了RAG系统中高质量知识库构建的关键要素。强调知识库质量直接影响AI回答准确性和用户体验。详细介绍了四大核心要素:内容权威性、语义完整性、结构化元数据和动态可维护性。通过银行客服案例展示了优化前后的显著效果,并提供了从最小可行知识集开始、监控检索失败率等实用建议。指出知识库是持续运营的产品机制,而非一次性工程。

2025-12-15 21:19:36 377

原创 【建议收藏】大模型学习全攻略:预训练核心技术与实战项目详解

本文详细解析了大模型预训练的核心流程与技术要点,包括Transformer解码器架构、Llama3分词器、高质量数据准备及训练参数设置等关键环节。通过语言建模任务,模型能学习自然语言生成规律与表达模式。文章还提供了系统的大模型学习资料与路线图,涵盖从基础理论到实战项目,适合零基础学习者、转型技术人及传统开发者进阶AI全栈工程师,助力读者掌握AI时代核心技术。

2025-12-14 08:45:00 1196

原创 【收藏】大模型是如何工作的?程序员必学的AI核心技术详解

文章详细解析了大模型的工作流程,包括文本分词化、Token向量化、模型推理、输出生成和循环判断五个核心阶段。介绍了temperature、top_p等参数如何控制模型输出的随机性和多样性,讨论了大模型的局限性及应对方案,提供了开发环境搭建和API配置方法,并展示了如何快速搭建大模型对话助手。最后,文章还分享了AI大模型的学习资源和就业前景。

2025-12-14 08:00:00 782

原创 Java开发者的AI新机遇:不用转Python,用RAG技术征服大模型(建议收藏)

本文阐述了RAG技术对Java开发者的独特价值,指出它能有效解决大模型知识过时和私有化难题。Java凭借其丰富的企业知识资源、成熟的Spring生态和高合规性匹配度,成为RAG落地的理想选择。文章通过实战案例展示了如何使用Java+SpringBoot构建企业级RAG系统,并分享了常见陷阱与解决方案。对于Java开发者而言,RAG不仅是技术挑战,更是弯道超车、成为企业智能化架构师的机遇。

2025-12-13 08:45:00 1699

原创 收藏必备:从零掌握大模型RAG技术:GraphRAG、MultiHop-RAG、HyDE与RAGFusion深度解析

本文系统介绍检索增强生成(RAG)技术及其四大变体:GraphRAG结合知识图谱提升准确性与可解释性;MultiHop-RAG通过多轮迭代检索解决复杂问题;HyDE通过生成假设文档优化检索;RAGFusion融合多文档提升回答质量。文章详细解析各技术原理、架构、应用场景及局限性,为开发者提供大模型应用优化方案。

2025-12-13 08:00:00 1404

原创 【收藏必备】从零到精通RAG技术:构建可靠AI应用的终极指南

RAG技术通过结合LLM的参数化知识与非参数化外部知识,有效解决了大模型的幻觉和知识局限问题。提升RAG性能的关键技术包括混合搜索、重排模型、查询转换和自适应检索。构建高性能RAG系统应从高质量文本切分和顶级嵌入模型开始,然后分阶段引入高级策略,并建立科学的评估体系,通过多阶段多策略的组合实现最佳检索效果。

2025-12-12 08:45:00 1424

原创 收藏级指南!2025年大模型学习路线:数学基础+编程能力+项目实战+持续学习

本文系统介绍了人工智能与大模型的学习路径,强调构建"数学基础→编程能力→项目实战→持续学习"的闭环体系。内容涵盖AI分支与层次、数学基础(线性代数、微积分、概率论)、编程工具(Python、TensorFlow/PyTorch)、实践资源(Kaggle、魔搭社区)及前沿技术(RAG、AI代理)。文章提供从入门到进阶的阶段性学习规划,推荐经典教材与在线课程,帮助学习者形成"理论-代码-业务"三位一体的核心竞争力。

2025-12-12 08:30:00 1425

原创 AI大模型应用开发完全指南:从零基础到实战,收藏必备技能栈

本文系统介绍AI大模型应用开发所需技能体系,分为核心硬技能(Python编程、机器学习基础、大模型专项技术如Prompt Engineering/RAG/微调、数据处理)和辅助软技能(问题分解、持续学习、系统性思维)。文章强调大模型开发者需成为"全栈AI工程师",综合后端开发、数据工程、机器学习和专项应用能力,提供了从入门到进阶的学习路径和实用工具栈建议。

2025-12-12 08:00:00 1028

原创 收藏必学!智能体式RAG(Agentic RAG)详解:AI智能体如何增强RAG系统

本文详细介绍了智能体式RAG(Agentic RAG),这是一种将AI智能体能力融入RAG的前沿方法。Agentic RAG在检索步骤中使用智能体,具备规划、适应、工具使用和反思能力,可分为单智能体和多智能体架构。通过智能体增强检索过程,使系统更灵活智能,能够处理复杂动态查询,为构建下一代智能应用奠定基础。同时文章提供了大模型学习资源和路径,帮助读者从入门到实战掌握相关技术。

2025-12-12 06:00:00 669

原创 程序员必看!18种RAG技术实战详解,收藏这篇就够了

文章解析了18种检索增强生成(RAG)技术,包括简单RAG、语义分块、文档增强等,通过代码示例和测试对比分析各技术优缺点。结果显示自适应RAG表现最佳(0.86分),能根据查询类型自动选择策略。文章还提供了大模型学习路径和资料,帮助读者掌握AI核心技能。

2025-12-11 09:15:00 981

原创 大模型学习宝典:21个RAG框架全解析+实战资源,收藏不亏!

本文详细介绍了21个检索增强生成(RAG)框架,如RAGFlow、Haystack、STORM等,展示了它们如何通过结合检索机制与生成模型提升LLM性能。这些框架各有特点,适用于医疗、金融、客户服务等多个领域。文章还探讨了普通人如何抓住AI大模型风口,提供了从基础理论到RAG开发、Agent设计等完整学习路径,帮助开发者系统掌握AI大模型技术,应对行业需求。

2025-12-11 09:15:00 780

原创 【值得收藏】大模型学习全攻略:Transformer架构到RAG实战,助你抓住AI时代机遇

这篇文章提供了一套系统的大模型学习资料,涵盖从NLP基础概念、Transformer架构、预训练语言模型到大模型应用的完整学习路径。内容包括RAG检索增强、Agent智能体等前沿技术,配有实战案例、视频教程、PDF书籍、行业报告和面试题等资源。适合小白入门和程序员进阶,帮助学习者系统掌握大模型核心技术,抓住AI时代机遇,实现职业转型和突破。

2025-12-11 08:45:00 1044

原创 【强烈收藏】大模型SFT微调实战:程序员必学的微调技巧与经验总结

文章介绍了大模型微调(SFT)的实战经验,强调微调前应先优化Prompt,准备高质量训练数据,关注实际指标而非单纯看Loss曲线。数据方面需注重多样性、分布和风格统一,采用"暴力美学"策略堆砌高质量样本。调参时应从大到小逐步摸索,采用循序渐进的学习方式,并针对小模型提供了解决方案。最后还介绍了进阶技巧和强化学习方法的应用。

2025-12-10 14:47:11 692

原创 大模型RAG系统术语全解析:小白也能看懂的本地部署指南,建议收藏

本文详细解析了搭建本地RAG系统的三大核心模型(大语言模型、向量模型、重排模型)及其工作原理,并系统解释了部署过程中常见的模型格式、量化方式、参数规模、推理引擎等术语。理解这些概念是成功部署本地RAG的关键,无论使用何种工具,掌握这些基础知识都能帮助用户正确选择模型、评估硬件需求,为后续部署奠定基础。

2025-12-10 14:42:13 1023

原创 【干货收藏】AI大模型技术详解:抓住风口,开启你的AI之旅

文章全面介绍了大模型技术的学习路径与实践方法,涵盖模型微调、数据构建、领域适配、训练优化等关键环节。从显存计算、指令微调到灾难性遗忘解决方案,提供了系统化的技术指南。同时分享了从零基础到进阶的学习资源,包括理论讲解、实战案例、行业报告及面试题库,帮助读者掌握大模型开发技能,抓住AI发展机遇,实现技术转型与职业提升。

2025-12-10 14:36:15 916

原创 智能体(Agent)开发实战:从工具到大脑,构建你的AI助手,值得收藏学习

智能体(Agent)是能理解需求并自主解决问题的AI助手,由四大核心组件构成:工具(解决问题的具体能力)、代理类型(如React架构的思考方法)、大模型(理解意图的大脑)和初始化组件(将各部分组装)。通过API密钥连接大模型,智能体可实现查天气、查询知识等功能,未来将更懂用户需求,成为实用的数字助手。

2025-12-10 14:25:48 825

原创 【建议收藏】大模型时代必备:AI Agent开发框架对比分析,助你快速上手智能应用开发

本文对比分析了LangGraph、AutoGen、Dify、Coze、MetaGPT、OpenAI Agents等AI Agent开发框架,从技术特性、应用场景、成本模型等多维度进行评估,并提供选型建议。同时介绍大模型学习资源,助力开发者快速掌握智能应用开发。

2025-12-10 14:22:50 697

原创 【必藏】解决大模型上下文受限问题:零成本开源方案,让模型突破8k窗口限制

文章针对大模型三类上下文受限问题(内容无法生成、输出不完整、记忆丢失),提出三种开源解决方案:卸载策略(长文档本地存储)、压缩策略(递归摘要历史内容)、检索策略(关键需求向量存储)。通过全开源技术栈(LangChain、VLLM、Milvus等),无需付费扩容或更换模型,即可让现有开源模型突破上下文窗口限制。文章提供"一步一操作"的实操代码,可直接复制使用,解决当下问题。

2025-12-09 11:14:21 1285

原创 收藏必看!RAG技术深度解析:检索与生成两阶段详解,小白入门大模型增强指南

RAG(检索增强生成)包含检索和生成两个不同阶段。检索阶段注重数据召回,通过知识库建设、文档拆分、向量化等技术提高准确率;生成阶段则处理检索数据,进行格式化、去重、上下文管理等,优化模型生成效果。两者技术手段和目的不同,检索阶段面临复杂文档格式处理的挑战,是RAG应用中最困难的部分。

2025-12-09 11:04:38 1057

原创 收藏必备!PPO算法实战:如何微调GPT-2生成积极IMDB电影评论

本文详细介绍如何使用PPO算法微调GPT-2模型生成积极IMDB评论。通过将BERT情感分析作为奖励信号,PPO优化模型输出,使其生成的评论情感更加积极。文章包含完整的数据准备、模型配置、训练流程和结果展示,为读者提供了从理论到实践的完整指南。

2025-12-09 11:00:42 840

原创 收藏必看!Google《智能体的质量》白皮书深度解析,大模型智能体评估全攻略

Google《智能体的质量》白皮书提出AI智能体评估需从用户价值出发,通过有效性、效率、健壮性、安全与对齐四大支柱构建评估框架。强调轨迹评估而非仅关注结果,结合自动化指标与LLM裁判等多种评估方法。建立可观测性架构,通过智能体质量飞轮实现闭环自优化,遵循评估内生于设计、轨迹即真相、人为最终仲裁者三大核心原则,确保大模型智能体的可靠性与价值对齐。

2025-12-09 10:57:44 633

原创 程序员收藏:一文读懂RAG与Agentic RAG,大模型检索增强技术的完全指南

文章对比了RAG和Agentic RAG两种检索增强技术。RAG如"图书馆管理员",是线性、被动的流程,简单快速但处理复杂问题能力有限。Agentic RAG如"智能项目经理",具有主动思考、自我修正和工具使用能力,能处理复杂任务但响应慢、成本高。文章指出AI正从"检索"进化到"认知",从"单打独斗"走向"团队协作",记忆与规划成为关键能力。开发者应根据需求选择:简单问题用RAG,复杂分析用Agentic RAG。

2025-12-08 13:57:20 1108

原创 AI Agent开发利器:LangChain框架全解析,避坑指南必收藏!

文章详细分析了LangChain作为LLM应用开发框架的优缺点。它作为AI Agent领域的"瑞士军刀",有生态全、集成能力强的优势,但也存在架构过于抽象、学习曲线陡峭、版本迭代快导致API不兼容、调试困难、性能开销大、功能设计不够极致等问题。文章指出LangChain适合快速验证原型和集成多种工具/模型的场景,但不适合轻量化、高并发和需要极致定制化的企业级项目。

2025-12-08 13:53:50 827

原创 收藏必看:RAG会被长上下文、Agent记忆和Text2SQL淘汰吗?大模型技术选型指南

文章探讨了RAG技术与其他技术的关系,指出它们是不同维度的能力而非替代关系。RAG解决了LLM的三大局限(幻觉、上下文限制、知识封闭),通过检索增强生成提升回答准确性和知识更新能力。RAG作为现代LLM应用的基础设施,未来趋势是多种技术的组合使用,而非简单替代。

2025-12-08 13:48:00 839

原创 【必收藏】AI发展全史:从小白到大神,一文读懂大模型演进之路

本文从历史时间线系统梳理了AI的发展历程:从初生期的"规则式AI"到成长期的"统计式AI",再到爆发期的"深度学习/大模型AI"。详细介绍了自然语言处理、机器学习、Transformer架构、大模型、智能体等关键技术的演进,并通过案例分析阐述了AI从简单规则应用到复杂多模态智能的发展路径。文章还分享了智能体开发实践,如RAG、微调等技术,以及对AI未来发展的展望,为读者提供了理解AI发展脉络的系统性视角。

2025-12-08 11:58:39 1061

原创 一文读懂大模型如何理解你的语言:Token与Embedding,建议收藏学习

本文深入浅出地解释了大模型理解语言的两大核心概念:Token是AI处理文本的基本单位,通过算法切分文本并映射为数字编号;Embedding则将这些编号转换为高维向量,在语义空间中表示词义。理解这两个概念有助于我们更好地使用大模型,包括优化Prompt设计、理解Token限制以及开发基于语义的应用。

2025-12-07 09:15:00 1724 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除