1225:金银岛

文章讨论了一个问题,KID在有限的口袋承重限制下,如何通过合理分割不同种类、价值和重量成正比的金属,以获取最大价值。通过编程实现对金属按照价值密度排序并进行分割计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目描述】

某天KID利用飞行器飞到了一个金银岛上,上面有许多珍贵的金属,KID虽然更喜欢各种宝石的艺术品,可是也不拒绝这样珍贵的金属。但是他只带着一个口袋,口袋至多只能装重量为w的物品。岛上金属有s�个种类, 每种金属重量不同,分别为n1,n2,...,ns�1,�2,...,��,同时每个种类的金属总的价值也不同,分别为v1,v2,...,vs�1,�2,...,��。KID想一次带走价值尽可能多的金属,问他最多能带走价值多少的金属。注意到金属是可以被任意分割的,并且金属的价值和其重量成正比。

【输入】

第1行是测试数据的组数k�,后面跟着k�组输入。

每组测试数据占3行,第1行是一个正整数w(1≤w≤10000)�(1≤�≤10000),表示口袋承重上限。第2行是一个正整数s(1≤s≤100)�(1≤�≤100),表示金属种类。第3行有2s2�个正整数,分别为n1,v1,n2,v2,...,ns,vs�1,�1,�2,�2,...,��,��分别为第一种,第二种,...,第s�种金属的总重量和总价值(1≤ni≤10000,1≤vi≤10000)(1≤��≤10000,1≤��≤10000)。

【输出】

k�行,每行输出对应一个输入。输出应精确到小数点后22位。

【输入样例】

2
50
#include<bits/stdc++.h>
using namespace std;
struct node{
    int n;
    int v; 
    double q;
};
node a[105];
bool cmp(node x,node y){
	return x.q>y.q; 
}
int w;
int s;
int k;
int  main(){
    cin>>k;
    while(k--){
    	double ans=0;
    	cin>>w>>s;
    	for(int i=1;i<=s;i++){
    		cin>>a[i].n>>a[i].v;
    		a[i].q=a[i].v*1.0/a[i].n;
		}
		sort(a+1,a+1+s,cmp);
		for(int i=1;i<=s;i++){
			if(a[i].n<=w){
				ans+=a[i].v;
				w-=a[i].n;
			}else{
				ans+=w*1.0/a[i].n*a[i].v;
				break;
			}
		}
		printf("%.2lf\n",ans);
	}
    return 0;
}

4
10 100 50 30 7 34 87 100
10000
5
1 43 43 323 35 45 43 54 87 43

【输出样例】

171.93
508.00
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值