素数筛法
在普通筛法中,一个合数可以被多个素数筛出(6可以既可被2又可被3筛出)
重复的筛选,浪费了时间复杂度(O(nlogn))
线性筛法将合数表示为最小的素数因子*一个数的形式
枚举k,令p是k的最小的素数因子(p≤k),p1<p2<…<p。
将p1*k,p2*k…p*k标记为合数
p1,p2…p是这些合数的最小的素数因子
例如12 = 2 *6 被 2 筛出,此时2是6的最小素数因子,而不会被3筛出
/*
Name: prime
Copyright:
Author:
Date: 10/01/19 19:59
Description:
*/
#include <iostream>
#include <bits\stdc++.h>
using namespace std;
int fun(int n)
{
int *prime = new int[n+1];
int *p = new int[n/2+1];
memset(prime,0,sizeof(int)*(n+1));
int i,j,t = 0;
for(i = 2;i <= n;i++)
{
if(prime[i] == 0)
{
p[t++] = i;
cout << i << endl;
}
for(j = 0;j < t && i*p[j] <= n;j++)
{
cout << " " << i*p[j] <<endl;
prime[i*p[j]] = 1;
if(i%p[j] == 0)break;
}
cout << "-------" << endl;
}
return t;
}
int main()
{
cout << fun(10);
return 0;
}