题意大体是给定一个字符串,根据字符串建树,然后可以把树化简成一个图,最后根据图输出一行字符串
思路
映射
题目就是要求化简子树,使每一个子树都唯一存在,可以用一个三元组SubTree(root, l, r)代表整个子树,root是当前子树根的字符串,
l是当前子树的左子树,r是当前子树的右子树,每次用map查询可以实现O(logn)的查询,建树的时候直接从左到右扫描字符串,如果
当前字符是'(',则递归继续建树,否则则表示当前的子树已经构建完成,给每一个子树一个旧编号,用一个固定数组存下来,遍历的
时候用题目要求的新编号取代旧编号递归输出即可。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1000000 + 10;
const int maxd = 50000 + 10;
int nc;
struct SubTree{
string root;
int l, r;
SubTree(){root = ""; l = r = 0;}
SubTree(string root, int l, int r) : root(root), l(l), r(r){}
bool operator < (const SubTree & rhs) const {
return root <rhs.root
|| (root == rhs.root && l < rhs.l)
|| (root == rhs.root && l == rhs.l && r < rhs.r);
}
}subtree[maxd];
map<SubTree, int> ID;
int nID[maxn];
bool isexp(char ch){
return ch == '(' || ch == ')' || ch == ',';
}
int pos;
int build_tree(char * s){
SubTree st;
while(isalpha(s[pos])){
st.root.push_back(s[pos]);
pos++;
}
if(s[pos] == '('){
pos++;
st.l = build_tree(s);
st.r = build_tree(s);
}
pos++;
if(!ID.count(st)){
ID[st] = ++nc;
subtree[nc] = st;
}
return ID[st];
}
set<int> ss;
void print(int root){
SubTree & st = subtree[root];
int id = ID[st];
if(!ss.count(id)){
printf("%s", st.root.c_str());
nID[id] = ++nc;
ss.insert(id);
if(st.l == 0 && st.r == 0) return;
putchar('('); print(st.l);
putchar(','); print(st.r);
putchar(')');
}else {
printf("%d", nID[id]);
return;
}
}
void solve(char * s){
int len = strlen(s);
pos = 0;
int root = build_tree(s);
nc = 0;
print(root); putchar('\n');
}
char s[maxn];
void init(){
nc = 0;
ID.clear();
ss.clear();
}
int main()
{
int n; scanf("%d", &n);
while(n --){
init();
scanf("%s", s);
solve(s);
}
return 0;
}