hiho刷题日记——第九天状态压缩·二

本文介绍了一道关于使用大小为2*1的蛋糕填充N*M盘子的问题,并探讨了如何利用状态压缩动态规划方法求解该问题的不同填充方案数量。通过具体的C++代码实现展示了如何检查合法状态并递归计算所有可能的填充方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hiho刷题日记——第九天状态压缩·二

题目

小Hi和小Ho领到了一个大小为N*M的长方形盘子,他们可以用这个盒子来装一些大小为2*1的蛋糕。但是根据要求,他们一定要将这个盘子装的满满的,一点缝隙也不能留下来,才能够将这些蛋糕带走。

这么简单的问题自然难不倒小Hi和小Ho,于是他们很快的就拿着蛋糕离开了~

但小Ho却不只满足于此,于是他提出了一个问题——他们有多少种方案来装满这个N*M的盘子呢?

代码
#include<cstdio>
#include<cstring>
using namespace std; 

#define MAXX 1000000007
int N,M;
int mem[1001][6][1050];

bool check1(int j,int n)
{
    if(j+1==M) return false;
    n=n>>j;
    if(n%2) return false;  //第j位是1 就不能填
    n=n>>1;
    if(n%2) return false;  //第j+1位是1  也不能
    return true; 
}

bool check2(int i,int j,int n)
{
    if(i+1==N) return false;
    n=n>>j;
    if(n%2) return false;
    n=n>>M;
    if(n%2) return false; //其实从逻辑上讲 这里是没必要的
    return true; 
}

int f(int i,int j,int n)
{
    if(mem[i][j][n]!=-1) return mem[i][j][n];
    if(i==N) return mem[i][j][n]=1;
    if((n&((1<<M)-1)) == ((1<<M)-1)) return mem[i][j][n]=f(i+1,0,n>>M)%MAXX;
    if(j==M) return mem[i][j][n]=0;

    int t1=0,t2=0,t3=f(i,j+1,n);
    if(check1(j,n)) 
    t1=f(i,j+2,n|3<<j);
    if(check2(i,j,n))
    t2=f(i,j+1,n | 1<<j | 1<<(j+M));
    return mem[i][j][n]=((t1+t2)%MAXX+t3)%MAXX;
} 

int main()
{
    memset(mem,-1,sizeof(mem));
    scanf("%d%d",&N,&M);

    printf("%d",f(0,0,0));

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值