- 博客(237)
- 资源 (11)
- 问答 (1)
- 收藏
- 关注
原创 揭秘OSI模型:一封信的七段旅程
层级名称比喻关键词第七层应用层你决定写信给谁,说什么浏览器、微信第六层表示层翻译语言、格式转换、美化信纸加密、压缩、编码第五层会话层和朋友建立一次对话会话保持、登录状态第四层传输层分页编号、确保顺序、确认收到TCP、UDP第三层网络层决定送信路线,找到目标城市IP、路由器第二层数据链路层信装进邮袋,写上邮差编号MAC地址、以太网第一层物理层骑车、坐飞机,把信从你家送出去电信号、光信号OSI 模型就像一部严谨又分工明确的邮政系统。
2025-05-22 22:02:31
409
原创 Docker Compose 的安装方法
Docker Compose V2 与旧版 V1 命令兼容,但建议使用 docker compose(集成到 Docker CLI)而非独立工具 docker-compose 54。若 Docker 镜像拉取缓慢,可修改 Docker 配置文件 /etc/docker/daemon.json,添加国内镜像源(如阿里云、中科大等)517。将文件上传至服务器 /usr/local/bin 目录,重命名为 docker-compose,再执行权限设置和验证步骤 32。方法 1:通过官方脚本安装(推荐)
2025-05-14 14:38:37
714
原创 deepseek-coder-6.7b-instruct安装与体验-success
【代码】deepseek-coder-6.7b-instruct安装与体验。
2025-05-12 13:46:02
145
原创 深度解析DeepSeek-Coder-6.7B-Instruct:代码世界的“瑞士军刀“如何炼成
{"code": "for i in range(100000): process(i)", "label": "性能-循环优化"}这种设计使得在代码质检场景中,模型能像4S店的故障诊断仪一样,同时检测发动机(逻辑错误)、刹车系统(安全漏洞)和车载电脑(规范问题)。{"code": "if user.is_admin: delete_all()", "label": "高危-权限漏洞"},(代码质检):如同经验丰富的主任医师,通过"望闻问切"(静态分析、动态推理)发现潜在问题。
2025-05-12 11:24:14
625
原创 通义千问Qwen3全维度解析
Qwen3如同"AI领域的混合动力汽车",在性能与成本间取得精妙平衡。个人开发者建议从7B版本起步,企业用户优先考虑14B定制方案,科研机构可探索72B的边界突破。记住:选择模型不是选最贵的,而是选最适合业务场景的"智能引擎"。
2025-04-29 19:34:57
711
原创 CosyVoice 技术全景解析:下一代语音生成模型的革命性突破
在技术与人文的平衡中,CosyVoice 或将成为下一代人机交互的核心基础设施。,突破传统 TTS(Text-to-Speech)模型在个性化和表现力上的局限。:支持 200ms 级延迟的流式语音合成,适用于电话客服等实时场景。:将语音特征压缩至 256 维量子化空间,降低 70% 内存占用。:通过元学习框架实现跨说话人特征解耦,解决小样本过拟合问题。:研究用途完全免费,商业应用需购买许可证($999/月),于 2024 年 12 月正式开源。:实现“声音 NFT”级定制,误差率低于人耳识别阈值。
2025-04-28 10:56:30
1235
原创 Stable Diffusion 技术全景解析与行业竞争力分析
其基于 Latent Diffusion 架构,通过将图像压缩到潜在空间进行扩散过程,大幅降低计算需求,成为首个能在消费级GPU上运行的生成式AI模型。:支持自定义模型(Dreambooth)、插件(如AnimateDiff视频生成):支持骨骼绑定(OpenPose)、景深控制(Depth2Img)编码器(VAE)将图像压缩至潜在空间(Latent Space):TripoSR工具实现文本→3D网格模型(10秒内生成):允许商业修改与二次分发(对比DALL-E的严格限制)
2025-04-27 11:03:22
806
原创 CogView4 模型全面解析:能力、竞品、部署成本与个人部署建议
CogView4是由智谱 AI(Zhipu AI)推出的一款多模态大模型,专注于文本生成图像(Text-to-Image,T2I)任务。相较于 DALL·E、Stable Diffusion 等国外模型,CogView4 在中文语义理解与汉字图文生成能力上具有显著优势。CogView4 的开源不仅是技术突破,更为中文语义图像生成开辟了新的范式。其在指令跟随、多语种适配、图文一致性方面的优异表现,让它成为国产 AI 模型中极具代表性的一款。
2025-04-25 17:55:44
592
原创 ComfyUI 简介
工具名称模块化程度上手难度资源占用扩展性社区活跃度ComfyUI高中低高高中低中高高InvokeAI中中中中中低低高低低Midjourney无极低云端无高。
2025-04-25 14:10:10
558
原创 Jupyter Notebook 全面介绍:从原理到实战部署
Jupyter 不仅是数据科学家和研究人员的工作利器,也逐渐成为教育、运维和开发领域的重要工具。随着 JupyterLab、VSCode 集成和 AI 辅助开发工具的发展,Jupyter 的使用门槛越来越低,生态日益丰富。如果你希望我补充一份图文并茂的版本(含架构图、对比图等)、或者想将这篇文章转为 PDF 或 Markdown 发布格式,也可以告诉我,我可以立即帮你生成。
2025-04-25 09:29:20
763
原创 Janus Pro
模型名称开发公司:DeepSeek(中国杭州)开源许可:MIT 许可,支持商业用途发布平台模型规模:提供 1B 和 7B 参数版本架构特点:采用统一的 Transformer 架构,结合 SigLIP-Large-Patch16-384 编码器,实现图像理解与生成的融合 Janus Pro 作为一款开源的多模态 AI 模型,在性能、灵活性和社区支持方面表现出色,尤其适合需要本地部署和高度定制化的应用场景。
2025-04-24 19:50:16
843
原创 AI文生图模型对比
近年来,文生图(Text-to-Image, T2I)模型在人工智能领域取得了显著进展。本文将从模型开源性、热度、能力、竞品分析、部署成本等多个方面进行详细介绍,并通过图表进行对比分析,帮助您全面了解当前主流的文生图模型。。
2025-04-24 19:43:55
1366
原创 扩散模型(Diffusion Model)详解:原理、发展与应用
近年来,扩散模型在生成式AI领域(如Stable Diffusion、DALL·E 2)表现突出,逐步取代了传统的。:相比GAN,扩散模型推理需多次迭代(但Consistency Models等新方法在改进)。αˉt=∏s=1t(1−βs)αˉt=∏s=1t(1−βs) 是累积噪声因子。:扩散模型+LLM(如Stable Diffusion 3结合语言模型)。过程,逐步对输入数据(如图像)添加高斯噪声,最终使其变成完全随机的噪声。:ControlNet(基于扩散模型的条件控制)。
2025-04-24 19:25:45
787
原创 请详细说明下面训练阶段的差别: Supervised Fine-Tuning、Reward Modeling、PPO、DPO、KTO、Pre-Training
阶段是否需要标注数据是否训练新模型是否需 reward model优点否(大数据)✅❌学习语言本身SFT✅(人工答案)✅❌教模型完成任务✅(排序)✅✅评估回答好坏PPO✅(排序)✅✅RLHF核心步骤DPO✅(偏好对)✅❌简洁高效KTO✅(偏好对)✅❌稳定度更高。
2025-04-16 20:37:38
957
原创 通义千问Qwen2.5-Omni-7B多模态部署与全方位体验
这次决定购买安小时付费的服务器,不用的时候释放资源;包月包年利用率低,属实浪费。算力云可用的资源越来越少了,看文章RTX4090可以用,买个RTX4090吧。:可(FP16约14GB显存),支持多模态输入(如图文问答)。:需(显存需求降至~36GB)或(性能下降显著)。由于RTX4090卖完了,所以我买了。
2025-04-16 20:25:31
545
原创 组装一台训练+推理服务器硬件配置建议
目标你的选择显卡2 × RTX 3090 二手 or 1 × A6000 48G内存微调方式支持模型通义 Qwen2.5-7B / 14B预算控制在 16000~22000 元。
2025-04-16 15:32:43
845
原创 我想自己组装一台服务器,微调大模型通义千问2.5 Omni 72B,但是我是个人购买,资金非常有限,最省的方案
阶段动作✅ 推理用 GGUF + llama.cpp + 4090 加载 14B INT4✅ 微调训练 Qwen2.5-7B-Chat,使用 LoRA / QLoRA❌ 放弃Qwen2.5-Omni-72B 全量微调(显存需求 >160G,不现实)
2025-04-16 15:31:25
987
原创 LoRA微调中的r=8配置详解:原理、应用与Qwen2.5-Omni优化指南
target_modules=["q_proj", "v_proj", "vision_model.proj"], # 增加视觉投影层。self.r = min(8 + current_epoch//2, 16) # 随训练逐步增大。modules_to_save=["lm_head"] # 保留输出层全参数。(rank的缩写)是LoRA(Low-Rank Adaptation)微调中的。(intrinsic rank),即低秩矩阵的维度大小。,它决定了适配器(Adapter)的。
2025-04-16 15:15:40
859
原创 NVIDIA L20 GPU深度解析:竞品对比与Qwen2.5-Omni多模态部署实践指南
若预算允许,搭配2台L20通过Tensor Parallelism可实现Qwen2.5-72B全参数推理,总成本仍低于单张A100。,基于Ada Lovelace架构,专为AI负载和图形虚拟化优化,定位介于L4与L40之间。:0.00012(对比A100的0.00012(对比A100的0.00009):填补了L4与L40之间的性价比空白,是企业入门级AI加速卡的优质选择。:ECC显存+vGPU支持,适合企业级7x24h运行。:CUDA生态碾压,但显存带宽仅为AMD的27%:长期稳定支持,适合企业级部署。
2025-04-16 15:14:25
1283
原创 Qwen2.5-Omni 部署框架选择指南:PyTorch vs. TensorFlow 深度对比
https://example.com/cat.jpg</image>这是什么动物?keras.models.load_model("qwen_tf_savedmodel") # 需预先转换。inputs = tf.constant(["<image>...
2025-04-16 14:51:17
1223
原创 RTX 4090单卡服务器部署Qwen2.5-Omni多模态大模型可行性分析:推理与微调实践指南
若需生产级多卡部署,建议考虑RTX 4090 + 云服务(如AWS P4d实例)弹性扩展。:FP16/BF16性能接近A100(312 TFLOPS),适合LLM推理和微调。:无法多卡并联扩展显存(如部署Qwen2.5-72B需量化或模型并行)。:24GB显存可容纳较大模型(如Qwen2.5-7B全参数加载)。(FP16约14GB显存),支持多模态输入(如图文问答)。:需额外加载CLIP等视觉编码器(显存增加2-4GB)。72B模型需4-bit量化。示例:医疗影像报告生成(需LoRA微调+医疗数据集)。
2025-04-16 14:37:35
1150
原创 华为鲲鹏920 910B2x (64GB) 深度解析:CUDA支持与大模型部署能力评估
华为鲲鹏920(Kunpeng 920)是华为基于ARM架构自主研发的高性能服务器处理器,:通义千问官方支持PyTorch,需转换至MindSpore或使用华为提供的适配工具。:鲲鹏920本身无显存,依赖外接AI卡(昇腾910B提供32GB HBM)。:鲲鹏920服务器 + 昇腾910B * 4(通过华为Atlas平台互联)。(如Qwen-1.8B),性能较低(~5 tokens/s)。为OM(Offline Model)格式,适配华为昇腾硬件。(如HIP、SYCL)可能兼容,但效率较低。
2025-04-16 14:12:57
2275
原创 H20-NVLink显卡深度评测与竞品分析:多GPU性能与专业应用场景
H20-NVLink 是基于NVIDIA Hopper架构的高性能计算(HPC)与AI训练专用显卡,主要面向数据中心、深度学习和大规模并行计算任务。:单卡可扩展至4-8卡互联,显存池化(NVLink Switch技术)。:支持FP8精度计算,适用于大模型训练(如GPT-4、LLaMA等)。在特定HPC任务(如Intel优化软件)中表现良好,但生态支持较弱。:相比GDDR6显存,带宽提升3倍以上,减少数据瓶颈。,可实现多卡协同计算,大幅提升显存带宽和计算效率。,H20可能降价,成为性价比更高的AI训练卡。
2025-04-16 13:53:57
1438
原创 [Jenkins]pnpm install ‘pnpm‘ 不是内部或外部命令,也不是可运行的程序或批处理文件。
这个错误提示再次说明:你的系统(CMD 或 Jenkins 环境)。虽然你可能已经用安装过,但系统不知道它装在哪里,也就无法执行pnpm命令。
2025-04-16 11:40:34
584
原创 Tmux 终极指南:终端复用神器与竞品分析
即使在断开 SSH 连接后仍能保持会话运行。它广泛应用于服务器管理、远程开发和长时间运行的任务。,Tmux 几乎是无敌的。对于本地开发,可搭配。,允许用户在一个终端窗口中创建、管理和切换多个。:最高层级,代表一个工作环境(如开发、运维)。:相当于浏览器标签页,一个会话可包含多个窗口。# 用户B:连接到同一会话(需SSH权限):窗口内的分屏,支持同时查看多个终端。,适合需要分屏和复杂配置的用户。:纯命令行工具,适合远程服务器。:SSH 断开后任务不中断。:不适合习惯图形界面的用户。# 分离会话(后台运行)
2025-04-15 09:58:46
645
原创 vLLM:高性能大语言模型推理引擎详解与对比分析
传统 LLM 推理时,KV Cache(存储注意力机制的 Key-Value 对)会占用大量显存,且由于请求长度不一,容易造成。的内存利用率,从而在相同硬件条件下实现更高的吞吐量(Throughput)和更低的延迟(Latency)。:vLLM 在通用 GPU 上接近 TensorRT-LLM,远超 HuggingFace。)是由加州大学伯克利分校团队开发的高性能大语言模型(LLM)推理引擎,专注于。机制(类似操作系统的分页内存管理),显著优化了。:vLLM 显存优化显著,适合长文本推理。
2025-04-15 09:35:02
1215
原创 Javascript逗号操作符
这段代码是一个使用了生成器函数(Generator Function)的无限循环(for (;;),内部通过switch语句控制流程。代码中有很多逗号分隔的语句,这其实是利用了JavaScript的(comma operator),它会依次执行多个表达式,并返回最后一个表达式的结果。
2025-04-14 20:04:19
352
原创 AutoDL + vLLM 部署 Qwen2.5-Omni 并提供跨服务器API访问的完整指南
本文将详细介绍如何在AutoDL云计算平台上使用vLLM部署Qwen2.5-Omni大语言模型,并配置允许从外部服务器访问的API服务。本方案结合了AutoDL的高性价比GPU资源和vLLM的高效推理能力,适合需要对外提供大模型服务的中小企业和开发者。
2025-04-11 09:55:00
1890
原创 vLLM部署Qwen2.5-Omni 提供API的详细步骤
的吞吐量(batch_size=32时)。如需进一步优化吞吐或延迟,可根据实际负载调整批处理参数。按照此方案部署后,Qwen2.5-Omni在A100上可实现。量化方式(awq/gptq)
2025-04-11 09:45:55
1456
1
原创 git清理已经删除的远程分支
协作开发时,其他人删除了远程分支,你需要同步本地仓库的远程分支列表。),但本地仍保留着对该分支的引用,这个选项会清理这些失效的引用。拉取最新的分支和标签信息,更新本地的远程跟踪分支(如。:如果远程仓库的分支已被删除(例如其他人删除了。你的本地分支(即使它们跟踪的远程分支已被删除)。# 3. 再次检查,失效的远程分支引用已消失。可能这些分支仍然存在于远程仓库,未被删除。# 1. 查看所有分支(包含远程跟踪分支)你删除了远程仓库的分支(如。显示大量陈旧的远程分支。,仅同步远程仓库的状态。
2025-04-10 11:00:29
601
原创 低成本部署 Qwen2.5-Omni 并集成 API 的优化方案,兼顾硬件成本和易用性,适合个人开发者或小规模验证场景
临时测试、间歇性使用(国内低价首选):A10G(24GB显存)约,支持从HuggingFace直接拉取模型。(国际):A10(24GB)约。
2025-04-10 10:11:06
1396
原创 vLLM 与 Ollama 部署与应用
vLLM 与 FastChat 的结合可以实现高性能的大语言模型(LLM)服务。以下是详细的 Docker 部署步骤。Ollama 支持在本地环境中轻松运行多个大语言模型,以下是在 macOS 上的部署步:。如果返回预期的文本输出,说明部署成功 citeturn0search1。Ubuntu 20.04 或以上版。NVIDIA GPU(如 A100。
2025-04-09 17:19:50
803
原创 vLLM vs Ollama 全面对比:两大推理平台的终极较量与最佳实践指南(2025)
如果你需要……请选这个高性能、大规模在线服务vLLM快速原型测试、本地私聊助手Ollama企业私有化部署vLLM内网无网环境离线使用Ollama高并发、低延迟的 Chat 接口vLLM小团队内部使用、节省成本Ollama。
2025-04-09 17:11:22
1806
解决centos7安装.net8环境依赖的问题
2024-11-28
静态文件放阿里云的oss加载速度很快!为啥很少看到有人把全部的静态资源放到oss?
2022-07-01
TA创建的收藏夹 TA关注的收藏夹
TA关注的人