C++:AVL树的插入详解


AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

在这里插入图片描述

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O(log2n),搜索时间复杂度O(log2n)。

AVL树节点的定义

template <class T>
class TreeNode
{
	int m_bf;
	T m_data;
	TreeNode<T>* m_left;
	TreeNode<T>* m_right;
	TreeNode<T>* m_parent;
public:
	TreeNode(const T& val = T()) :
		m_bf(0),
		m_data(val),
		m_left(nullptr),
		m_right(nullptr),
		m_parent(nullptr)
	{}
};
AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点

  2. 调整节点的平衡因子

template <class T>
class AVLTree
{
	TreeNode<T>* m_root;
public:
	bool insert(const T& val)
	{
		if (m_root == nullptr)
		{
			m_root = new TreeNode<T>(val);
			return true;
		}

		TreeNode<T>* cur = m_root;
		TreeNode<T>* pre = nullptr;

		while (cur)
		{
			if (val < cur->m_data)
			{
				pre = cur;
				cur = cur->m_left;
			}
			else if (val > cur->m_data)
			{
				pre = cur;
				cur = cur->m_right;
			}
			else
			{
				return false;
			}
		}

		cur = new TreeNode<T>(val);
		if (val < pre->m_data)
		{
			pre->m_left = cur;
		}
		else
		{
			pre->m_right = cur;
		}

		cur->m_parent = pre;

		while (pre)
		{
			// 更新双亲的平衡因子
			if (pre->m_left == cur)
			{
				pre->m_bf--;
			}
			else
			{
				pre->m_bf++;
			}

			// 更新后检测双亲的平衡因子
			if (pre->m_bf == 0)
			{
				break;
			}
			// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1
			// 说明以双亲为根的二叉树的高度增加了一层,因此需要继续向上调整 
			else if (pre->m_bf == 1 || pre->m_bf == -1)
			{
				cur = pre;
				pre = pre->m_parent;
			}
			else
			{
				// 双亲的平衡因子为正负2,违反了AVL树的平衡性
				// 需要对以pParent为根的树进行旋转处理
				if (pre->m_bf == 2)
				{
					if (cur->m_bf == 1)
					{
						lRound(pre);
					}
					else
					{
						rlRound(pre);
					}
				}
				else
				{
					if (cur->m_bf == 1)
					{
						lrRound(pre);
					}
					else
					{
						rRound(pre);
					}
				}
				break;
			}
		}
		return true;
	}
};
AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡 化。根据节点插入位置的不同,AVL树的旋转分为四种:

  1. 新节点插入较高右子树的右侧—右右:左单旋
    在这里插入图片描述
	// 出现右右这种情况,触发左单旋
	void lRound(TreeNode<T>* pre)
	{
		TreeNode<T>* parent = pre->m_parent;
		TreeNode<T>* cur = pre->m_right;

		cur->m_parent = parent;
		if (parent)
		{
			if (parent->m_left == pre)
			{
				parent->m_left = cur;
			}
			else
			{
				parent->m_right = cur;
			}
		}
		else
		{
			m_root = cur;
		}

		pre->m_right = cur->m_left;
		if (cur->m_left)
		{
			cur->m_left->m_parent = pre;
		}

		cur->m_left = pre;
		pre->m_parent = cur;

		cur->m_bf = pre->m_bf = 0;
	}
  1. 新节点插入较高左子树的左侧—左左:右单旋

在这里插入图片描述

// 出现左左这种情况,触发右单旋
	void rRound(TreeNode<T>* pre)
	{
		TreeNode<T>* parent = pre->m_parent; //B结点
		TreeNode<T>* cur = pre->m_left;

		cur->m_parent = parent;
		if (parent)
		{
			if (parent->m_left == pre)
			{
				parent->m_left = cur;
			}
			else
			{
				parent->m_right = cur;
			}
		}
		else
		{
			m_root = cur;
		}

		pre->m_left = cur->m_right;
		if (cur->m_right)
		{
			cur->m_right->m_parent = pre;
		}

		cur->m_right = pre;
		pre->m_parent = cur;

		cur->m_bf = pre->m_bf = 0;
	}
  1. 新节点插入较高左子树的右侧—左右:先左单旋再右单旋

在这里插入图片描述

	void lrRound(TreeNode<T>* pre)
	{
		TreeNode<T>* left = pre->m_left;
		TreeNode<T>* newroot = left->m_right;

		int flag = newroot->m_bf;

		lRound(pre->m_left);
		rRound(pre);

		if (flag == -1)
		{
			pre->m_bf = 1;
		}
		else if (flag == 1)
		{
			left->m_bf = -1;
		}
	}
  1. 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

在这里插入图片描述

	void rlRound(TreeNode<T>* pre)
	{
		TreeNode<T>* right = pre->m_right;
		TreeNode<T>* newroot = right->m_left;

		int flag = newroot->m_bf;

		rRound(pre->m_right);
		lRound(pre);

		if (flag == -1)
		{
			right->m_bf = 1;
		}
		else if(flag == 1)
		{
			pre->m_bf = -1;
		}
	}
图解AVL树双旋过程

在这里插入图片描述

AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树

    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

	std::vector<T> InOrder()
	{
		std::stack<TreeNode<T>*> s;
		std::vector<T> res;
		TreeNode<T>* cur = m_root;

		while (cur || !s.empty())
		{
			for (; cur; cur = cur->m_left)
			{
				s.push(cur);
			}

			if (!s.empty())
			{
				cur = s.top();
				res.push_back(cur->m_data);
				s.pop();

				cur = cur->m_right;
			}
		}

		return res;
	}
  1. 验证其为平衡树
    1. 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
    2. 节点的平衡因子是否计算正确
	int _Height(TreeNode<T>* root) {
		if (root == NULL)
		{
			return 0;
		}
		int depth = 0;
		//求左子树的高度
		int leftDepth = _Height(root->m_left);
		//求右子树的高度
		int rightDepth = _Height(root->m_right);
		//求二叉树的高度
		depth = leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
		return depth;
	}

	bool _IsBalanceTree(TreeNode<T>* pRoot) {
		// 空树也是AVL树
		if (nullptr == pRoot)
			return true;
		// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差 
		int leftHeight = _Height(pRoot->m_left);
		int rightHeight = _Height(pRoot->m_right);
		int diff = rightHeight - leftHeight;
		// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者 
		// pRoot平衡因子的绝对值超过1,则一定不是AVL树
		if (diff != pRoot->m_bf || (diff > 1 || diff < -1))
			return false;
		// pRoot的左和右如果都是AVL树,则该树一定是AVL树
		return _IsBalanceTree(pRoot->m_left) && _IsBalanceTree(pRoot->m_right);
	}

AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 log2N 。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如: 插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。 因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树, 但一个结构经常修改,就不太适合。

模拟实现AVL树的插入

.h文件

#pragma once

#include <vector>
#include <stack>

namespace dg {

template <class T>
class TreeNode
{
	int m_bf;
	T m_data;
	TreeNode<T>* m_left;
	TreeNode<T>* m_right;
	TreeNode<T>* m_parent;
public:
	TreeNode(const T& val = T()) :
		m_bf(0),
		m_data(val),
		m_left(nullptr),
		m_right(nullptr),
		m_parent(nullptr)
	{}

	template <class T>
	friend class AVLTree;
};

template <class T>
class AVLTree
{
public:
	TreeNode<T>* m_root;

	void destroy(TreeNode<T>* root)
	{
		if (root)
		{
			destroy(root->m_left);
			destroy(root->m_right);
			delete root;
		}
	}

	// 出现右右这种情况,触发左单旋
	void lRound(TreeNode<T>* pre)
	{
		TreeNode<T>* parent = pre->m_parent;
		TreeNode<T>* cur = pre->m_right;

		cur->m_parent = parent;
		if (parent)
		{
			if (parent->m_left == pre)
			{
				parent->m_left = cur;
			}
			else
			{
				parent->m_right = cur;
			}
		}
		else
		{
			m_root = cur;
		}

		pre->m_right = cur->m_left;
		if (cur->m_left)
		{
			cur->m_left->m_parent = pre;
		}

		cur->m_left = pre;
		pre->m_parent = cur;

		cur->m_bf = pre->m_bf = 0;
	}

	// 出现左左这种情况,触发右单旋
	void rRound(TreeNode<T>* pre)
	{
		TreeNode<T>* parent = pre->m_parent; //B结点
		TreeNode<T>* cur = pre->m_left;

		cur->m_parent = parent;
		if (parent)
		{
			if (parent->m_left == pre)
			{
				parent->m_left = cur;
			}
			else
			{
				parent->m_right = cur;
			}
		}
		else
		{
			m_root = cur;
		}

		pre->m_left = cur->m_right;
		if (cur->m_right)
		{
			cur->m_right->m_parent = pre;
		}

		cur->m_right = pre;
		pre->m_parent = cur;

		cur->m_bf = pre->m_bf = 0;
	}

	void rlRound(TreeNode<T>* pre)
	{
		TreeNode<T>* right = pre->m_right;
		TreeNode<T>* newroot = right->m_left;

		int flag = newroot->m_bf;

		rRound(pre->m_right);
		lRound(pre);

		if (flag == -1)
		{
			right->m_bf = 1;
		}
		else if(flag == 1)
		{
			pre->m_bf = -1;
		}
	}

	void lrRound(TreeNode<T>* pre)
	{
		TreeNode<T>* left = pre->m_left;
		TreeNode<T>* newroot = left->m_right;

		int flag = newroot->m_bf;

		lRound(pre->m_left);
		rRound(pre);

		if (flag == -1)
		{
			pre->m_bf = 1;
		}
		else if (flag == 1)
		{
			left->m_bf = -1;
		}
	}
public:
	AVLTree() :
		m_root(nullptr)
	{}

	~AVLTree()
	{
		destroy(m_root);
	}

	bool insert(const T& val)
	{
		if (m_root == nullptr)
		{
			m_root = new TreeNode<T>(val);
			return true;
		}

		TreeNode<T>* cur = m_root;
		TreeNode<T>* pre = nullptr;

		while (cur)
		{
			if (val < cur->m_data)
			{
				pre = cur;
				cur = cur->m_left;
			}
			else if (val > cur->m_data)
			{
				pre = cur;
				cur = cur->m_right;
			}
			else
			{
				return false;
			}
		}

		cur = new TreeNode<T>(val);
		if (val < pre->m_data)
		{
			pre->m_left = cur;
		}
		else
		{
			pre->m_right = cur;
		}

		cur->m_parent = pre;

		while (pre)
		{
			if (pre->m_left == cur)
			{
				pre->m_bf--;
			}
			else
			{
				pre->m_bf++;
			}

			if (pre->m_bf == 0)
			{
				break;
			}
			else if (pre->m_bf == 1 || pre->m_bf == -1)
			{
				cur = pre;
				pre = pre->m_parent;
			}
			else
			{
				if (pre->m_bf == 2)
				{
					if (cur->m_bf == 1)
					{
						lRound(pre);
					}
					else
					{
						rlRound(pre);
					}
				}
				else
				{
					if (cur->m_bf == 1)
					{
						lrRound(pre);
					}
					else
					{
						rRound(pre);
					}
				}
				break;
			}
		}
		return true;
	}

	std::vector<T> InOrder()
	{
		std::stack<TreeNode<T>*> s;
		std::vector<T> res;
		TreeNode<T>* cur = m_root;

		while (cur || !s.empty())
		{
			for (; cur; cur = cur->m_left)
			{
				s.push(cur);
			}

			if (!s.empty())
			{
				cur = s.top();
				res.push_back(cur->m_data);
				s.pop();

				cur = cur->m_right;
			}
		}

		return res;
	}

	int _Height(TreeNode<T>* root) {
		if (root == NULL)
		{
			return 0;
		}
		int depth = 0;
		//求左子树的高度
		int leftDepth = _Height(root->m_left);
		//求右子树的高度
		int rightDepth = _Height(root->m_right);
		//求二叉树的高度
		depth = leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
		return depth;
	}

	bool _IsBalanceTree(TreeNode<T>* pRoot) {
		// 空树也是AVL树
		if (nullptr == pRoot)
			return true;
		// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差 
		int leftHeight = _Height(pRoot->m_left);
		int rightHeight = _Height(pRoot->m_right);
		int diff = rightHeight - leftHeight;
		// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者 
		// pRoot平衡因子的绝对值超过1,则一定不是AVL树
		if (diff != pRoot->m_bf || (diff > 1 || diff < -1))
			return false;
		// pRoot的左和右如果都是AVL树,则该树一定是AVL树
		return _IsBalanceTree(pRoot->m_left) && _IsBalanceTree(pRoot->m_right);
	}

};

};

主函数:

#include "AVLTree.h"
#include <iostream>
using namespace std;

int main()
{
	dg::AVLTree<int> bst;

	bst.insert(5);
	bst.insert(2);
	bst.insert(8);
	bst.insert(0);
	bst.insert(4);
	bst.insert(7);
	bst.insert(9);
	bst.insert(1);
	bst.insert(3);
	bst.insert(6);
	
	//bst.insert(16);
	//bst.insert(3);
	//bst.insert(7);
	//bst.insert(11);
	//bst.insert(9);
	//bst.insert(26);
	//bst.insert(18);
	//bst.insert(14);
	//bst.insert(15);

	//bst.insert(4);
	//bst.insert(2);
	//bst.insert(6);
	//bst.insert(1);
	//bst.insert(3);
	//bst.insert(5);
	//bst.insert(15);
	//bst.insert(7);
	//bst.insert(16);
	//bst.insert(14);

	//bst.insert(1);
	//bst.insert(2);
	//bst.insert(3);
	//bst.insert(4);
	//bst.insert(5);
	//bst.insert(6);
	//bst.insert(7);
	//bst.insert(7);
	//bst.insert(6);
	//bst.insert(5);
	//bst.insert(4);
	//bst.insert(3);
	//bst.insert(2);
	//bst.insert(1);
	
	if (bst._IsBalanceTree(bst.m_root)) {
		cout << "是平衡二叉树:";
	}
	else {
		cout << "不是平衡二叉树:";
	}

	vector<int> v = bst.InOrder();

	for (auto& i : v)
	{
		cout << i << ' ';
	}
	return 0;
}

代码生成图:
在这里插入图片描述


如有不同见解,欢迎留言讨论

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值