[每日一题]146:矩阵中的幸运数


题目描述

给你一个 m * n 的矩阵,矩阵中的数字 各不相同 。请你按 任意 顺序返回矩阵中的所有幸运数。

幸运数是指矩阵中满足同时下列两个条件的元素:

  • 在同一行的所有元素中最小
  • 在同一列的所有元素中最大

示例 1:

输入:matrix = [[3,7,8],[9,11,13],[15,16,17]]
输出:[15]
解释:15 是唯一的幸运数,因为它是其所在行中的最小值,也是所在列中的最大值。

示例 2:

输入:matrix = [[1,10,4,2],[9,3,8,7],[15,16,17,12]]
输出:[12]
解释:12 是唯一的幸运数,因为它是其所在行中的最小值,也是所在列中的最大值。

示例 3:

输入:matrix = [[7,8],[1,2]]
输出:[7]

提示:

  • m == mat.length
  • n == mat[i].length
  • 1 <= n, m <= 50
  • 1 <= matrix[i][j] <= 10^5
  • 矩阵中的所有元素都是不同的

题解思路

方法一:模拟

遍历矩阵 matrix,判断 matrix[i][j] 是否是它所在行的最小值和所在列的最大值,如果是,则加入返回结果。

代码如下:

class Solution {
public:
    vector<int> luckyNumbers (vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        vector<int> ret;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                bool isMin = true, isMax = true;
                for (int k = 0; k < n; ++k) {
                    if (matrix[i][k] < matrix[i][j]) {
                        isMin = false;
                        break;
                    }
                }
                if (!isMin) {
                    continue;
                }
                for (int k = 0; k < m; ++k) {
                    if (matrix[k][j] > matrix[i][j]) {
                        isMax = false;
                        break;
                    }
                }
                if (isMax) {
                    ret.push_back(matrix[i][j]);
                }
            }
        }
        return ret;
    }
};

复杂度分析

  • 时间复杂度:O(mn×(m+n)),其中 m 和 n 分别是矩阵 matrix 的行数和列数。遍历矩阵 matrix 需要 O(mn),查找行最小值需要 O(n),查找列最大值需要 O(m)。
  • 空间复杂度:O(1)。返回值不计算空间复杂度。

方法二:预处理

预处理出每行的最小值数组 minRow 和每列的最大值数组 maxCol,其中 minRow[i] 表示第 i 行的最小值,maxCol[j] 表示第 j 列的最大值。遍历矩阵 matrix,如果 matrix[i][j] 同时满足matrix[i][j]=minRow[i] 和 matrix[i][j]=maxCol[j],那么 matrix[i][j] 是矩阵中的幸运数,加入返回结果。

代码如下:

class Solution {
public:
    vector<int> luckyNumbers (vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        vector<int> minRow(m, INT_MAX), maxCol(n, 0);
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                minRow[i] = min(minRow[i], matrix[i][j]);
                maxCol[j] = max(maxCol[j], matrix[i][j]);
            }
        }
        vector<int> ret;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] == minRow[i] && matrix[i][j] == maxCol[j]) {
                    ret.push_back(matrix[i][j]);
                }
            }
        }
        return ret;
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值