题目描述
给你一个整数数组 arr ,请使用 煎饼翻转 完成对数组的排序。
一次煎饼翻转的执行过程如下:
选择一个整数 k ,1 <= k <= arr.length
反转子数组 arr[0…k-1](下标从 0 开始)
例如,arr = [3,2,1,4] ,选择 k = 3 进行一次煎饼翻转,反转子数组 [3,2,1] ,得到 arr = [1,2,3,4] 。
以数组形式返回能使 arr 有序的煎饼翻转操作所对应的 k 值序列。任何将数组排序且翻转次数在 10 * arr.length 范围内的有效答案都将被判断为正确。
示例 1:
输入:[1,2,3]
输出:[]
解释:
输入已经排序,因此不需要翻转任何内容。
请注意,其他可能的答案,如 [3,3] ,也将被判断为正确。
题解思路:
方法一:类选择排序
设一个元素的下标是 index,我们可以通过两次煎饼排序将它放到尾部:
- 第一步选择 k=index+1,然后反转子数组 arr[0…k−1],此时该元素已经被放到首部。
- 第二步选择 k=n,其中 n 是数组 arr 的长度,然后反转整个数组,此时该元素已经被放到尾部。
通过以上两步操作,我们可以将当前数组的最大值放到尾部,然后将去掉尾部元素的数组作为新的处理对象,重复以上操作,直到处理对象的长度等于一,此时原数组已经完成排序,且需要的总操作数是 2×(n−1),符合题目要求。如果最大值已经在尾部,我们可以省略对应的操作。
代码如下:
class Solution {
public:
vector<int> pancakeSort(vector<int>& arr) {
vector<int> ret;
for (int n = arr.size(); n > 1; --n) {
int index = max_element(arr.begin(), arr.begin() + n) - arr.begin();
if (index == n - 1) {
continue;
}
reverse(arr.begin(), arr.begin() + index + 1);
reverse(arr.begin(), arr.begin() + n);
ret.push_back(index + 1);
ret.push_back(n);
}
return ret;
}
};
复杂度分析:
- 时间复杂度:O(n2),其中 n 是数组 arr 的大小。总共执行至多 n−1 次查找最大值,至多 2×(n−1) 次反转数组,而查找最大值的时间复杂度是 O(n),反转数组的时间复杂度是 O(n),因此总时间复杂度是 O(n2)。
- 空间复杂度: O ( 1 ) O(1) O(1)。返回值不计入空间复杂度。