在Windows系统下,用faster-RCNN进行模型训练

本文详细介绍了在Windows系统下使用faster-RCNN进行模型训练的步骤,包括图片标注、标注信息转换、Python环境配置、模型训练、模型转换以及视频监测的全过程。重点强调了训练过程中涉及的文件修改和注意事项,如train_val_pigDetect.prototxt、solver.prototxt和convert_model.py的调整。
摘要由CSDN通过智能技术生成

一、图片标注

程序1:(实用性不高)
下载地址:

http://download.csdn.net/download/sinat_30071459/9573982

参考网址:

http://blog.csdn.net/sinat_30071459/article/details/50723212

使用方法:

代码已经封装成DLL,你只需要打开项目,将图像路径修改成你的即可
(我用的VS为2013)。生成的txt内容为:图像名 标签 x1 y1 x2 y2。(包围框坐标)

  1. 图片显示出来后,输入法切换到英文;
  2. 在目标的左上角按下鼠标左键,拉一个包围框到目标右下角,然后键盘输入标签(一个字符)
  3. 继续(2)操作,直到框完该张图片上的目标;
  4. 按n进入下一张,esc退出。

注意:标签只能输入一个字符,你可以在生成的txt文件(存放在图片所在目录下)中替换成你实际的标签。

程序2(参考别人的程序,自己改编的)

参考网址:

http://blog.csdn.net/qq_29540745/article/details/52562101

每个txt内容如下图所示(左上角和右下角坐标,并且每个txt文件以文件名命名):


二、将标注信息转成固定格式

生成结果如下图所示:

# 序号

图片名

目标个数

标签 左上角横坐标 左上角纵坐标 右下角横坐标 右下角纵坐标 0/1(是否容易识别?)

<

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值