题意
n个物品,分别价值vi,价格pi,要求在买i物品时至少有qi的钱。
思路
考虑普通的01背包:dp[ i ][ j ] = max(dp[ i - 1 ][ j ], dp[ i - 1 ][ j - p[i] ] + v[i])
可理解为当手中有 j 的钱时考虑是否买物品i:
dp[ i - 1 ][ j ]:不买 i,仍用 j 的钱去买前 i - 1 件物品;
dp[ i - 1 ][ j - p[i] ] + v[i]:买i,用 j - p[i] 的钱去买前 i - 1 件物品。
则下标越大的物品实际是先买的物品。
此题中,在考虑 i 物品时,保证 j >= q[i] 才能购买,因此 j - p[i] >= q[i] - p[i],先买的物品 q[i] - p[i] 的值越大,就能用更多钱考虑买前 i - 1 件物品(贪心策略)。
按 q - p 从小到大排序。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define INF 0x3f3f3f3f
#define rep0(i, n) for (int i = 0; i < n; i++)
#define rep1(i, n) for (int i = 1; i <= n; i++)
#define rep_0(i, n) for (int i = n - 1; i >= 0; i--)
#define rep_1(i, n) for (int i = n; i > 0; i--)
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#define mem(x, y) memset(x, y, sizeof(x))
#define MAXN 510
#define MAXM 5010
using namespace std;
struct Node
{
int p, q, v;
};
Node itm[MAXN];
int dp[MAXM], n, m;
bool cmp(Node a, Node b)
{
return (a.q - a.p) < (b.q - b.p);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
#endif // ONLINE_JUDGE
while (scanf("%d %d", &n, &m) != EOF)
{
for (int i = 1; i <= n; i++)
scanf("%d %d %d", &itm[i].p, &itm[i].q, &itm[i].v);
sort(itm + 1, itm + 1 + n, cmp);
mem(dp, 0);
for (int i = 1; i <= n; i++)
{
for (int j = m; j >= itm[i].q; j--)
dp[j] = MAX(dp[j], dp[j - itm[i].p] + itm[i].v);
}
cout << dp[m] << endl;
}
return 0;
}