hdu3466_Proud Merchants_排序_01背包

题意

n个物品,分别价值vi,价格pi,要求在买i物品时至少有qi的钱。

思路

考虑普通的01背包:dp[ i ][ j ] = max(dp[ i - 1 ][ j ], dp[ i - 1 ][ j - p[i] ] + v[i])

可理解为当手中有 j 的钱时考虑是否买物品i:

dp[ i - 1 ][ j ]:不买 i,仍用 j 的钱去买前 i - 1 件物品;

dp[ i - 1 ][ j - p[i] ] + v[i]:买i,用 j - p[i] 的钱去买前 i - 1 件物品。

则下标越大的物品实际是先买的物品。

此题中,在考虑 i 物品时,保证 j >= q[i] 才能购买,因此 j - p[i] >= q[i] - p[i],先买的物品 q[i] - p[i] 的值越大,就能用更多钱考虑买前 i - 1 件物品(贪心策略)。

按 q - p 从小到大排序。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define INF 0x3f3f3f3f
#define rep0(i, n) for (int i = 0; i < n; i++)
#define rep1(i, n) for (int i = 1; i <= n; i++)
#define rep_0(i, n) for (int i = n - 1; i >= 0; i--)
#define rep_1(i, n) for (int i = n; i > 0; i--)
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#define mem(x, y) memset(x, y, sizeof(x))

#define MAXN 510
#define MAXM 5010
using namespace std;
struct Node
{
    int p, q, v;
};
Node itm[MAXN];
int dp[MAXM], n, m;
bool cmp(Node a, Node b)
{
    return (a.q - a.p) < (b.q - b.p);
}
int main()
{
    #ifndef ONLINE_JUDGE
        freopen("in.txt", "r", stdin);
    #endif // ONLINE_JUDGE

    while (scanf("%d %d", &n, &m) != EOF)
    {
        for (int i = 1; i <= n; i++)
            scanf("%d %d %d", &itm[i].p, &itm[i].q, &itm[i].v);
        sort(itm + 1, itm + 1 + n, cmp);
        mem(dp, 0);
        for (int i = 1; i <= n; i++)
        {
            for (int j = m; j >= itm[i].q; j--)
                dp[j] = MAX(dp[j], dp[j - itm[i].p] + itm[i].v);
        }
        cout << dp[m] << endl;
    }




    return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值