数字金字塔(动态规划)

描述

观察下面的数字金字塔。写一个程序查找从最高点到底部任意处结束的路径,使路径经过数字的和最大。每一步可以从当前点走到左下方的点也可以到达右下方的点。

在上面的样例中,从13到8到26到15到24的路径产生了最大的和86。

输入描述

第一个行包含R(1≤ R≤1000),表示行的数目。
后面每行为这个数字金字塔特定行包含的整数。
所有的被供应的整数是非负的且不大于100。

输出描述

单独的一行,包含那个可能得到的最大的和。

用例输入 1 

5
13
11 8
12 7 26
6 14 15 8
12 7 13 24 11

用例输出 1 

max=86

代码如下:

#include<bits/stdc++.h>
using namespace std;
int n,a[1001][1001]={};
int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=i;j++){
			cin>>a[i][j];
		}
	}
	for(int i=n;i>=1;i--){
		for(int j=i;j>=1;j--){
			a[i][j]+=max(a[i+1][j],a[i+1][j+1]);
		}
	}
	cout<<"max="<<a[1][1];
	return 0;
} 

数字金字塔问题是一个经典的动态规划问题,它可以用来求解给定数字金字塔的最大路径和。下面是一个使用C语言实现的示例代码: ```c #include <stdio.h> #define MAX_SIZE 100 int max(int a, int b) { return (a > b) ? a : b; } int maxPathSum(int pyramid[MAX_SIZE][MAX_SIZE], int n) { // 从倒数第二行开始向上计算最大路径和 for (int i = n - 2; i >= 0; i--) { for (int j = 0; j <= i; j++) { // 当前位置的最大路径和等于下一行相邻两个位置的较大值加上当前位置的值 pyramid[i][j] += max(pyramid[i + 1][j], pyramid[i + 1][j + 1]); } } // 最终结果保存在金字塔的顶部 return pyramid[0][0]; } int main() { int n; printf("请输入数字金字塔的行数:"); scanf("%d", &n); printf("请输入数字金字塔的元素:\n"); int pyramid[MAX_SIZE][MAX_SIZE]; for (int i = 0; i < n; i++) { for (int j = 0; j <= i; j++) { scanf("%d", &pyramid[i][j]); } } int maxSum = maxPathSum(pyramid, n); printf("最大路径和为:%d\n", maxSum); return 0; } ``` 这段代码中,我们首先定义了一个`max`函数,用于返回两个数中的较大值。然后,我们定义了一个`maxPathSum`函数,用于计算数字金字塔的最大路径和。在`maxPathSum`函数中,我们使用两层循环来遍历金字塔的每个位置,并根据动态规划的思想计算出最大路径和。最后,在`main`函数中,我们通过用户输入构建数字金字塔,并调用`maxPathSum`函数来求解最大路径和。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值