题目描述:
对于给定的一个长度为N的正整数数列 A1∼N,现要将其分成 M(M≤N)段,并要求每段连续,且要求每段和的最大值最小。
关于最大值最小:
例如一数列 4 2 4 5 1 要分成 3 段。
将其如下分段:
[4 2][4 5][1]
第一段和为 6,第 2 段和为 9,第 3 段和为 1,和最大值为 9。
将其如下分段:
[4][2 4][5 1]
第一段和为 4,第 2 段和为 6,第 3 段和为 6,和最大值为 6。
并且无论如何分段,最大值不会小于 6。
所以可以得到要将数列 4 2 4 5 1 要分成 3 段,每段和的最大值最小为 6。
输入格式:
第 1 行包含两个正整数 N,M。
第 2 行包含 N 个空格隔开的非负整数 Ai,含义如题目所述。
输出格式:
一个正整数,即每段和最大值最小为多少。
样例输入:
5 3 4 2 4 5 1
样例输出:
6
提示:
对于 20% 的数据,N≤10。
对于 40% 的数据,N≤1000。
对于 100% 的数据,1≤N≤105,M≤N,Ai<108, 答案不超过 109。
时间限制: 1000ms
空间限制: 256MB
代码如下:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,m,a[100001]={},xmax=0,s=0;
ll er(ll n1){
ll x=1,y=0;
for(int i=0;i<n;i++){
if(y+a[i]<=n1){
y+=a[i];
}else{
y=a[i];
x++;
}
}
return x;
}
int main(){
cin>>n>>m;
for(int i=0;i<n;i++){
cin>>a[i];
if(a[i]>xmax){
xmax=a[i];
}
s+=a[i];
}
ll l=xmax,r=s,mid=0,min=s;
while(l<=r){
// cout<<l<<" "<<mid<<" "<<r<<endl;
mid=(l+r)/2;
if(er(mid)>m){
l=mid+1;
}else{
min=mid;
r=mid-1;
}
//cout<<er(mid)<<endl;
}
cout<<min;
return 0;
}