题目描述
N (1 <= N <= 1000) cows, conveniently numbered 1..N all attend a tea time every day. M (1 <= M <= 2,000) unique pairs of those cows have already met before the first tea time. Pair i of these cows who have met is specified by two differing integers A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N). The input never indicates that cows have met each other more than once.
At tea time, any cow i and cow j who have met a mutual friend cow k will meet sometime during that tea time and thus expand their circle of known cows.
Determine whether Q (1 <= Q <= 100) pairs of cows have met after tea times are held for long enough that no new cow meetings are occurring. Query j consists of a pair of different cows X_j and Y_j (1 <= X_j <= N; 1 <= Y_j <= N).
For example, suppose that out of cows 1 through 5, we know that 2 has met 5, 2 has met 3, and 4 has met 5; see (a) below.
2---32---32---3
\ |\ | |\ /|
1 \ --> 1 | \ | --> 1 | X |
\ | \| |/ \|
4---54---54---5
(a) (b) (c)
In the first tea time, cow 2 meets cow 4, and cow 3 meets cow 5; see (b) above. In the second tea time, cow 3 meets cow 4; see (c) above.
N(1 <= N <= 1000)头奶牛,编号为1..N,在参加一个喝茶时间活动。在喝茶时间活动开始之前,已经有M(1 <= M <= 2,000)对奶牛彼此认识(是朋友)。第i对彼此认识的奶牛通过两个不相同的整数Ai和Bi给定(1<= Ai <= N; 1 <= Bi <= N)。输入数据保证一对奶牛不会出现多次。 在喝茶时间活动中,如果奶牛i和奶牛j有一个相同的朋友奶牛k,那么他们会在某次的喝茶活动中去认识对方(成为朋友),从而扩大他们的社交圈。 请判断,在喝茶活动举办很久以后(直到没有新的奶牛彼此认识),Q(1 <= Q <= 100)对奶牛是否已经彼此认识。询问j包含一对不同的奶牛编号Xj和Yj(1 <= Xj <= N; 1 <= Yj <= N)。 例如,假设共有1..5头奶牛,我们知道2号认识5号,2号认识3号,而且4号认识5号;如下图(a)。
2---32---32---3
\ |\ | |\ /|
1 \ --> 1 | \ | --> 1 | X |
\ | \| |/ \|
4---54---54---5
(a) (b) (c)
在某次的喝茶活动中,2号认识4号,3号认识5号;如上图(b)所示。接下来的喝茶活动中,3号认识4号,如上图(c)所示。
输入格式
* Line 1: Three space-separated integers: N, M, and Q
* Lines 2..M+1: Line i+1 contains two space-separated integers: A_i and B_i
* Lines M+2..M+Q+1: Line j+M+1 contains query j as two space-separated integers: X_j and Y_j
行1:三个空格隔开的整数:N,M,和Q
行2..M+1:第i+1行包含两个空格隔开的整数Ai和Bi
行M+2..M+Q+1:第j+M+1行包含两个空格隔开的整数Xj和Yj,表示询问j
输出格式
* Lines 1..Q: Line j should be 'Y' if the cows in the jth query have met and 'N' if they have not met.
行1..Q:如果第j个询问的两头奶牛认识, 第j行输出“Y”。如果不认识,第j行输出“N”
输入输出样例
输入 #1
5 3 3
2 5
2 3
4 5
2 3
3 5
1 5
输出 #1
Y
Y
N
代码如下:
#include<cstdio>
int a[2010]={},b[2001]={},zt[2010][2010]={};
int n,m,q;
int main(){
int x,y;
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=m;i++){
scanf("%d%d",&x,&y);
zt[x][y]=1;
zt[y][x]=1;
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(zt[i][j]==1){
for(int k=j+1;k<=n;k++){
if(zt[i][k]==1){
zt[j][k]=1;
zt[k][j]=1;
}
}
}
}
}
for(int i=1;i<=q;i++){
int xx,yy;
scanf("%d%d",&xx,&yy);
if(zt[xx][yy]==1) printf("Y\n");
else printf("N\n");
}
}