五节点HadoopHA安装教程:
Master1 namenode,resourcemanager,nodemanager,datanode,journalnode, DFSZKFailoverController
Master2 namenode,resourcemanager,nodemanager,datanode,journalnode, DFSZKFailoverController
Slave1 nodemanager,datenode,journalnode, QuorumPeerMain
Slave2 nodemanager,datenode,journalnode, QuorumPeerMain
Slave3 nodemanager,datenode,journalnode, QuorumPeerMain
- 安装jdk
配置环境变量
JAVA
export JAVA_HOME=/home/zhouwang/jdk1.8.0_151
export PATH=JAVAHOME/bin:PATH
export JRE_HOME=JAVAHOME/jreexportCLASSPATH=.:JAVA_HOME/lib:JREHOME/lib:CLASSPATH
2.配置个节点的/etc/hosts文件
192.168.71.128 master1
192.168.71.132 master2
192.168.71.129 slave1
192.168.71.130 slave2
192.168.71.131 slave3
3.配置SSH免密登录
Ssh-keygen -t rsa
Cat id_rsa.pub >> authorized_keys
Chmod 644 authorized_keys
Scp ~/.ssh/id_rsa.pub authorized_keys zhouwang@master:~/.ssh
Authorized_keys的权限必须是640
4.安装zookeeper
重命名conf文件夹下的zoo.example.cfg为zoo.cfg。新修改内容
clientPort=2181
dataDir=/home/zhouwang/zookeeper/data
dataLogDir=/home/zhouwang/zookeeper/log
server.0=master1:2888:3888
server.1=master2:2888:3888
server.2=slave1:2888:3888
server.3=slave2:2888:3888
server.4=slave3:2888:3888
在zookeeper文件夹下面创建相应的data和log文件夹,还有myid文件
Mkdir data
Mkdir log
Vim myid 输入1,每个节点的myid文件的值与server.x对应上
配置环境变量如下:
ZOOKEEPER
export ZOOKEEPER_HOME=/home/zhouwang/zookeeper
export PATH=PATH:ZOOKEEPER_HOME/bin
- 安装Hadoop
修改etc/hadoop下的四个配置文件
(1) core-site.xml
<property>
<name>fs.defaultFS</name>
<value>hdfs://master/</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/zhouwang/hadoop/tmp</value>
</property>
<property>
<name>ha.zookeeper.quorum</name>
<value>master1:2181,master2:2181,slave1:2181,slave2:2181,slave3:2181</value>
</property>
(2) hdfs_site.xml
<property>
<name>dfs.namenode.name.dir</name>
<value>/home/zhouwang/hadoop/dfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/home/zhouwang/hadoop/dfs/data</value>
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<!--HDFS高可用配置 -->
<!--指定hdfs的nameservice,需要和core-site.xml中的保持一致-->
<property>
<name>dfs.nameservices</name>
<value>master</value>
</property>
<!--指定master的两个namenode的名称 -->
<property>
<name>dfs.ha.namenodes.master</name>
<value>nn1,nn2</value>
</property>
<!-- nn1,nn2 rpc 通信地址 -->
<property>
<name>dfs.namenode.rpc-address.master.nn1</name>
<value>master1:9000</value>
</property>
<property>
<name>dfs.namenode.rpc-address.master.nn2</name>
<value>master2:9000</value>
</property>
<!-- nn1.nn2 http 通信地址 -->
<property>
<name>dfs.namenode.http-address.master.nn1</name>
<value>master1:50070</value>
</property>
<property>
<name>dfs.namenode.http-address.master.nn2</name>
<value>master2:50070</value>
</property>
<!--=========Namenode同步==========-->
<!--保证数据恢复 -->
<property>
<name>dfs.journalnode.http-address</name>
<value>0.0.0.0:8480</value>
</property>
<property>
<name>dfs.journalnode.rpc-address</name>
<value>0.0.0.0:8485</value>
</property>
<property>
<!--指定NameNode的元数据在JournalNode上的存放位置 -->
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://master1:8485;master2:8485;slave1:8485;slave2:8485;slave3:8485/master</value>
</property>
<property>
<!--JournalNode存放数据地址 -->
<name>dfs.journalnode.edits.dir</name>
<value>/home/zhouwang/hadoop/dfs/journal</value>
</property>
<property>
<!--NameNode失败自动切换实现方式 -->
<name>dfs.client.failover.proxy.provider.master</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!--=========Namenode fencing:======== -->
<!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行 -->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence
shell(/bin/true)</value>
</property>
<!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/zhouwang/.ssh/id_rsa</value>
</property>
<!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
<!--开启基于Zookeeper及ZKFC进程的自动备援设置,监视进程是否死掉 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
(3) mapred-site.xml
<!-- 指定mr框架为yarn方式 -->
<name>mapreduce.framework.name</name>
<value>yarn</value>
<name>mapreduce.jobhistory.address</name>
<value>master1:10020</value>
<name>mapreduce.jobhistory.webapp.address</name>
<value>master1:19888</value>
(4) yarn-site.xml
<!--NodeManager上运行的附属服务。需配置成mapreduce_shuffle,才可运行MapReduce程序-->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.connect.retry-interval.ms</name>
<value>2000</value>
</property>
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>cluster</value>
</property>
<!--指定两台RM主机名标识符-->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!--RM主机1-->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>master1</value>
</property>
<!--RM主机2-->
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>master2</value>
</property>
<!--RM故障自动切换-->
<property>
<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!--RM故障自动恢复 -->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<!--RM状态信息存储方式,一种基于内存(MemStore),另一种基于ZK(ZKStore)-->
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>master1:2181,master2:2181,slave1:2181,slave2:2181,slave3:2181</value>
</property>
<!--向RM调度资源地址-->
<property>
<name>yarn.resourcemanager.scheduler.address.rm1</name>
<value>master1:8030</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm2</name>
<value>master2:8030</value>
</property>
<!--NodeManager通过该地址交换信息-->
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
<value>master1:8031</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
<value>master2:8031</value>
</property>
<!--客户端通过该地址向RM提交对应用程序操作-->
<property>
<name>yarn.resourcemanager.address.rm1</name>
<value>master1:8032</value>
</property>
<property>
<name>yarn.resourcemanager.address.rm2</name>
<value>master2:8032</value>
</property>
<!--管理员通过该地址向RM发送管理命令-->
<property>
<name>yarn.resourcemanager.admin.address.rm1</name>
<value>master1:8033</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm2</name>
<value>master2:8033</value>
</property>
<!--RM HTTP访问地址,查看集群信息-->
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>master1:8088</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>master2:8088</value>
</property>
(5) slaves
localhost
192.168.71.129 slave1
192.168.71.130 slave2
192.168.71.131 slave3
192.168.71.128 master1
192.168.71.132 master2
设置配置文件:
HADOOP
export HADOOP_HOME=/home/zhouwang/hadoop
export PATH=PATH:HADOOP_HOME/bin:HADOOPHOME/sbinexportHADOOPCONFDIR=HADOOP_HOME/etc/hadoop
export YARN_CONF_DIR=$HADOOP_HOME/etc/Hadoop
将hadoop文件夹分发到各个节点上去:
Scp -r Hadoop zhouwang@XXX:~/Hadoop
- 第一次启动集群
配置了zookeeper的节点启动zkServer.sh服务
zkServer.sh start
然后查看zookeeper状态,zkServer.sh status,显式为follower或者leader则说明启动成功
然后,数据节点启动journalnode服务,hadoop-deamen.sh start journalnode
在master1格式化namenode: Hadoop namenode -format
然后启动namenode服务: Hadoop-deamon.sh start namenode
在master2同步master1的元数据: HDFS namenode -bootstrapStandby
然后再master2上启动namenode服务: Hadoop-deamon.sh start namenode
在master上格式化ZKFC
Hdfs zkfc -formatZK
在master1和master2上执行hadoop-deamon.sh start zkfc 启动DFSZKFailoverController 服务#ZKFC用于监控NameNode active和standby节点状态
在master1上启动hadoop-deamons.sh start datanode 启动所有数据节点上的datanode服务。
在master1上执行start-yarn.xml启动yarn服务。
至此安装完成。
7.第一次停止集群
先停止hdfs:stop-dfs.sh
在停止yarn:stop-yarn.sh
再次启动或者停止就可以执行start-all.sh 和stop-all.sh了。
8.Hdfs操作命令
Hadoop dfsadmin -report #查看datanode的节点信息
Hdfs haadmin -getServiceState nn1 查看namenode的状态
hdfs haadmin -transitionToActive/transitionToStandby -forcemanual nn1 强制切换节点的active和是standby状态。