P1967 货车运输

题目描述

AA 国有 nn 座城市,编号从 11 到 nn ,城市之间有 mm 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入输出格式

输入格式:

第一行有两个用一个空格隔开的整数 n,mn,m ,表示 AA 国有 nn 座城市和 mm 条道路。

接下来 mm 行每行 33 个整数 x, y, zx,y,z ,每两个整数之间用一个空格隔开,表示从 xx 号城市到 yy 号城市有一条限重为 zz 的道路。注意: xx 不等于 yy ,两座城市之间可能有多条道路 

接下来一行有一个整数 q,表示有 q 辆货车需要运货。

接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意: x 不等于 y 

输出格式:

共有 qq 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出 -11

输入输出样例

输入样例#1:  复制
4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
输出样例#1:  复制
3
-1
3

说明

对于 30\%30% 的数据, 0 < n < 1,000,0 < m < 10,000,0 < q< 1,0000<n<1,000,0<m<10,000,0<q<1,000 ;

对于 60\%60% 的数据, 0 < n < 1,000,0 < m < 50,000,0 < q< 1,0000<n<1,000,0<m<50,000,0<q<1,000 ;

对于 100\%100% 的数据, 0 < n < 10,000,0 < m < 50,000,0 < q< 30,000,0 ≤ z ≤ 100,000

0<n<10,000,0<m<50,000,0<q<30,000,0z100,000 


lca倍增(据说是模板题)

#include<bits/stdc++.h>

using namespace std;

int n , m;
const int MAXN = 100000 + 10;
int g[MAXN] , u[2 * MAXN] , v[2 * MAXN] , w[2 * MAXN] , First[2 * MAXN] , Next[2 * MAXN];
int fa[MAXN][21] , ff[MAXN][21] , deep[MAXN];
int inf = 0x7fffffff;
struct f
{
    int x;
    int y;
    int c;
}a[MAXN] ;

int com(const f &u , const f &v)
{
    return u.c > v.c;
}

int bin(int x )
{
    while(x != g[x])
        x = g[x] = g[g[x]];
    return x;
}

void kruskal()
{
    int num = 0;
    for(int i = 1; i <= m ; i ++)
    {
        int x = bin(a[i].x);
        int y = bin(a[i].y);
        if(x != y)
        {
            g[y] = x;
            num ++;
            u[num] = a[i].x; v[num] = a[i].y ; w[num] = a[i].c;
            Next[num] = First[u[num]]; First[u[num]] = num;
            u[num + n - 1] = a[i].y ; v[num + n - 1] = a[i].x; w[num + n - 1] = w[num];
            Next[num + n - 1] = First[u[num + n - 1]];First[u[num + n - 1]] = num + n - 1; 
            if(num == n - 1)
                break;
        }
    }
}

void dfs(int q)
{
    for(int k = First[q] ; k != -1; k = Next[k])
    {
        int to = v[k];
        if(deep[to] == 0)
        {
            deep[to] = deep[q] + 1;
            fa[to][0] = q;
            ff[to][0] = w[k];
            dfs(to);
        }
    }
}
void ycl()
{
    for(int i = 1; i <= n ; i ++)
    {
        if(deep[i] == 0)
        {
            deep[i] = 1;
            fa[i][0] = 0;
            dfs(i);
        }
    }
    dfs(1);
    for(int i = 1; i <= 20 ; i ++)
    {
        for(int j = 1; j <= n ; j ++)
        {
            fa[j][i] = fa[fa[j][i-1]][i-1];
            ff[j][i] = min(ff[j][i-1],ff[fa[j][i-1]][i-1]);
        }
    }
}

int lca(int x , int y)
{
    int ans = inf;
    if(deep[x] < deep[y])
    {
        swap(x , y);
    }
    for(int i = 20 ; i >= 0 ; i --)
    {
        if(deep[fa[x][i]] >= deep[y])
        {
            ans = min (ans , ff[x][i]);
            x = fa[x][i];
        }
    }
    if(x == y)
        return ans;
    for(int i = 20 ; i >= 0 ; i --)
    {
        if(fa[x][i] != fa[y][i])
        {
            ans = min (ans , min(ff[x][i] , ff[y][i]));
            x = fa[x][i];
            y = fa[y][i];
        }
    }
    ans = min (ans, min (ff[x][0] , ff[y][0]));
    return ans;
}
int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n ; i ++)
    {
        g[i] = i; 
        First[i] = -1;
    }
    for(int i = 1 ; i <= m ; i ++)
    {
        scanf("%d %d %d" , &a[i].x , &a[i].y , &a[i].c);
    }
    sort( a + 1, a + m + 1, com);
    kruskal();
    ycl();
    int T;
    cin >> T;
    while(T --)
    {
        int x , y;
        scanf("%d %d" , &x , &y);
        if(bin(x) != bin(y))
        {
            printf("-1\n");
        }
        else
        {
            printf("%d\n",lca(x,y));
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值