题目描述
在一个长方形框子里,最多有N(0≤N≤6)个相异的点,在其中任何一个点上放一个很小的油滴,那么这个油滴会一直扩展,直到接触到其他油滴或者框子的边界。必须等一个油滴扩展完毕才能放置下一个油滴。那么应该按照怎样的顺序在这N个点上放置油滴,才能使放置完毕后所有油滴占据的总体积最大呢?(不同的油滴不会相互融合)
注:圆的面积公式V=pi*r*r,其中r为圆的半径。
输入输出格式
输入格式:
第1行一个整数N。
第2行为长方形边框一个顶点及其对角顶点的坐标,x,y,x’,y’。
接下去N行,每行两个整数xi,yi,表示盒子的N个点的坐标。
以上所有的数据都在[-1000,1000]内。
输出格式:
一行,一个整数,长方形盒子剩余的最小空间(结果四舍五入输出)
输入输出样例
输入样例#1: 复制
2 20 0 10 10 13 3 17 7
输出样例#1: 复制
50
#include<bits/stdc++.h>
using namespace std;
const double Pi = 3.14159265358979323846;
int n;
double dis[10][10],r[10], ans,Up,Down,Left,Right,x[10],y[10];
int book[10];
void dfs(int now, double sum)
{
if(now == n + 1)
{
ans = max(sum, ans);
return;
}
for(int i = 1; i <= n; i ++)
{
if(!book[i])
{
double t1 = min(x[i] - Left, Right - x[i]), t2 = min(y[i] - Down, Up - y[i]);
r[i] = min (t1, t2);
for(int j = 1; j <= n; j ++)
{
if(book[j])
{
r[i] = min (r[i], dis[i][j] - r[j]);
}
}
if(r[i] < 0)
r[i] = 0;
book[i] = 1;
dfs(now + 1, sum + r[i] * r[i] * Pi);
book[i] = 0;
}
}
}
int main()
{
scanf("%d", &n);
double x1,y1,x2,y2;
scanf("%lf %lf %lf %lf", &x1, &y1, &x2, &y2);
Left = min(x1,x2), Right = max(x1,x2);
Up = max(y1,y2), Down = min(y1,y2);
for(int i = 1; i <= n; i ++)
scanf("%lf %lf", &x[i], &y[i]);
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= n; j ++)
{
if(i == j)
dis[i][j] = 0;
dis[i][j] = dis[j][i] = sqrt((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]));
}
dfs(1,0);
int final_ans;
//cout << ans << endl;
double temp = (Up - Down) * (Right - Left) - ans;
//cout << temp << endl;
int t = temp;
t *= 10;
//cout << t << endl;
t = temp * 10 - t;
//cout << t << endl;
if(t >= 5)
final_ans = temp + 1;
else
final_ans = temp;
//cout << final_ans << endl;
printf("%d\n", final_ans);
return 0;
}