周期串问题

## 算法竞赛入门经典习题

习题3-4 周期串(Periodic Strings, UVa455)

如果一个字符串可以由某个长度为k的字符串重复多次得到,则称该串以k为周期。例 如,abcabcabcabc以3为周期(注意,它也以6和12为周期)。 输入一个长度不超过80的字符串,输出其最小周期。

问题分析:以变量i表示周期数,j表示第二个周期开始,由题只需判断前两个周期相等,只要判断(a[j]!=a[j%i])即当前周期数中有数不相等,则跳出判断下一周期即可,当当前周期所有数相等,则当前周期数为最小周期数

#include<stdio.h>
#include<string.h>
char a[10005];
int main()
{
	scanf("%s",a);
	int len=strlen(a);
	int i,j,flag;//i记录周期数,j记录下一个周期开始的位置
	for(i=1;i<len;i++)
	{
		if(len%i==0)
		{
			flag=1;
			for(j=i;j<len;j++)//从第二个周期起始位置开始判断
				if(a[j]!=a[j%i])//比较周期中每个数是否相等
				{
					flag=0;
					break;//不相等跳出,周期数加一
				}
		}
			if(flag)//找到周期跳出
			break;
	}
	printf("%d\n",i);
	return 0;
}

运行结果:
在这里插入图片描述

### 字符串周期的概念 字符串周期是指如果一个字符串可以通过某个子字符串重复多次而构成,则称这个子字符串长度为该字符串一个周期。例如,在字符串 `abcabcabc` 中,子字符串 `abc` 被重复了三次,因此该字符串以 3 为周期。 更正式地说,对于一个长度为 \( n \) 的字符串 \( s \),如果存在一个整数 \( k \) (\( 1 \leq k < n \)),使得对于所有的 \( i \in [0, n-k-1] \),有 \( s[i] = s[i+k] \),则称 \( k \) 是字符串 \( s \) 的一个周期[^4]。 --- ### 字符串最小周期的计算方法 为了找到字符串的最小周期,通常采用如下算法: #### 方法描述 已知字符串 \( s \) 的长度为 \( n \),我们需要寻找最小的正整数 \( k \) 满足上述周期定义。具体实现方式如下: 1. 枚举可能的周期 \( k \)(从 1 到 \( n-1 \))。 2. 对于每一个候选周期 \( k \),验证是否满足 \( s[i] = s[i \% k] \) 对所有 \( i \geq k \) 成立。 3. 若某次枚举成功通过检验,则当前的 \( k \) 即为所求的最小周期并停止进一步搜索。 以下是基于此逻辑的具体代码实现: ```cpp #include <iostream> #include <cstring> using namespace std; int main() { string s; cin >> s; int length = s.length(); for(int k = 1; k <= length; ++k){ if(length % k != 0) continue; // 非法周期跳过 bool isPeriod = true; for(int j = k; j < length && isPeriod; ++j){ if(s[j] != s[j % k]){ isPeriod = false; } } if(isPeriod){ cout << k << endl; return 0; } } return 0; } ``` 以上程序实现了对输入字符串最小周期的有效检测[^2]。 --- ### 相关算法对比 除了朴素的方法外,还有其他高效的字符串匹配技术可用于优化周期检测过程中的某些环节,比如 **KMP** 或 **Boyer-Moore (BM)** 算法。然而这些高级算法主要用于解决更加复杂的模式匹配问题而非单纯的周期判定任务。尽管如此,理解它们的工作原理有助于提升整体效率意识[^5]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值