锯齿矩阵是指每一行包含的元素个数不相同的矩阵,比如:
3 5 2 6 1
2 3 4
1 6 2 7
读入若干个对整数(x,y),表示在第x 行的末尾加上一个元素y.输出最终的锯齿数组。初始时矩阵为空。
输入格式:
第一行输入两个整数n m(1<=n,m<=10000),其中n表示锯齿数组的行数,m表示插入的元素总数。
接下来一共m行,每一行两个整数x ,y(1<=x<=n,0<=y<=10000),表示在第x行的末尾插入一个元素y.
输出格式:
一共输出n行,每行若干个用空格分隔开的整数。若干某行没有任何元素,则输出一个空行。
样例输入:
3 12
1 3
2 2
2 3
2 4
3 1
3 6
1 5
1 2
样例输出:
3 5 2 6 1
2 3 4
1 6 2 7
分析:此题由于矩阵每行长度不一,而且是要增加每行的长度,所以用vector二维数组来实现会比较容易,在这里我们用另一种定义二维数组的方法vector< int >a[10005];表示开出了10005个vector数组,每个vector数组代表一行
C语言代码:
#include<cstdio>
#include<vector>
#include<iostream>
using namespace std;
vector<int> mat[10005];
int main()
{
int n,m,x,y;
cin>>n>>m;
for(int i=0;i<m;i++)
{
cin>>x>>y;
mat[x].push_back(y);
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<mat[i].size();j++)
{
if(j!=mat[i].size()-1)
cout<<mat[i][j]<<" ";
else
cout<<mat[i][j];;
}
cout<<endl;
}
return 0;
}