资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
样例输出
14
首先写出普通搜索,确定出口时要注意有两种状态
1.在出口处面临抉择时,如果手上刚好有k个是一种方案(出口处选择不拿)
2.在出口处面临抉择时,如果手上刚好有k-1件物品,并且出口的宝贝比手上任意宝贝价值都大,也视为一种方案(出口处选择拿)
转记忆化搜索,只需要开一个和dfs参数一样多的维度缓存数组,在搜索开头查找缓存,尾部记录缓存,中途用局部变量ans进行记录返回即可
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int mp[50][50];
long long cache[50][50][14][14];
int n,m,k;
long long dfs(int x,int y,int maxt,int con){
long long ans=0;
if(cache[x][y][maxt+1][con]!=-1)return cache[x][y][maxt+1][con];//历史上出现过
if(x==n||y==m)return 0;//出界
if(con>k)return 0;//剪枝
if(x==n-1&&y==m-1){//到了出口
if(con==k||(con==k-1&&mp[x][y]>maxt)){
ans++;
ans%=1000000007;
}
return ans;
}
if(mp[x][y]>maxt){ //这个物品可以拿
ans+=dfs(x+1,y,mp[x][y],con+1);
ans+=dfs(x,y+1,mp[x][y],con+1);
}
ans+=dfs(x+1,y,maxt,con);
ans+=dfs(x,y+1,maxt,con);
cache[x][y][maxt+1][con]=ans%1000000007;//记录状态
return ans%1000000007;
}
int main(){
cin>>n>>m>>k;
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
cin>>mp[i][j];
}
}
memset(cache,-1,sizeof(cache));
cout<<dfs(0,0,-1,0)<<endl;//起点处的物品价值可以等于0,所以初始状态最大子设-1
return 0;
}