排序
8.1 排序的定义
排序分类
内部排序
排序期间元素全部存放在内存中的排序
插入(直接插入排序、折半插入排序、希尔排序);交换排序(冒泡排序、快速排序);选择排序(简单选择排序、堆排序);归并排序;基数排序
外部排序
排序期间元素无法全部同时存放在内存中,必须在排序的过程中根据要求不断地在内、外存之间移动
多路归并排序
算法的稳定性
若待排序表中有两个元素 R j R_j Rj和 R j R_j Rj,其对应的关键字相同,且在排序前 R i R_i Ri在 R j R_j Rj前面,若使用某一排序算法排序后, R i R_i Ri仍在 R j R_j Rj前面,则称这个排序算法是稳定的,否则称排序算法是不稳定的。
习题8.1
- 拓扑排序是将有向图中所有结点排成一个线性序列,在内存中进行,但不满足排序定义,不属于内部排序,也不属于外部排序。
- 对于任意基于比较的排序,比较次数至少为 ⌈ l o g 2 ( n ! ) ⌉ \lceil log_2^{(n!)}\rceil ⌈log2(n!)⌉
8.2 插入排序
直接插入排序
待排序表L[1…n]在某次排序过程中的某一时刻状态下:
要将元素L(i)插入到已有序的子序列L[1…i-1]中,需要执行以下操作:
1)查找出L(i)在L[1…i-1]中的插入位置k
2)将L[k…i-1]中的所有元素依次后移一个位置。
3)将L(i)复制到L(k)
void InsertSort(ElemType A[], int n){
int i,j;
for(i=2;i<=n;i++){
if(A[i]<A[i-1]){
A[0]=A[i]; //哨兵
for(j=i-1;A[0]<A[j];--j) //从后往前查找待插入位置
A[j+1]=A[j];
A[j+1]=A[0];
}
}
}
结合上代码具体实现过程演示(可能有小错误,R2这轮应该是不用的)
算法性能分析
- 空间效率:常数个辅助单元, O ( 1 ) O(1) O(1)
- 时间效率:在排序过程中,向有序子表中逐个地插入元素的操作进行了 n − 1 n-1 n−1趟,每趟操作都分为比较和移动,比较次数和移动次数取决于初始状态。
最好情况:表中有序,只需比较,不需要移动, O ( n ) O(n) O(n);
最坏情况:表为逆序,比较次数为 σ i = 2 n i \sigma_{i=2}^ni σi=2ni,移动次数为 σ i = 2 n ( i + 1 ) \sigma_{i=2}^n(i+1) σi=2n(i+1), O ( n 2 ) O(n^2) O(n2);
平均情况:取上述最好与最坏情况的平均值, O ( n 2 ) O(n^2) O(n2)。 - 稳定性:稳定。
- 适用性:顺序和链式都可以。
折半插入排序
直接插入排序算法的改进,将比较和移动操作分离,先折半查找出元素待插入位置,然后统一地移动待插入位置之后的所有元素。
void InsertSort(ElemType A[], int n){
int i,j,low,high,mid;
for(i=2;i<=n;i++){
A[0]=A[i];
low=1;
high=i-1;
while(low<=high){
//折半查找
mid=(low+high)/2
if(A[mid]>A[0])
high=mid-1;
else
low=mid+1;
}
for(j=i-1;j>=high+1;--j)
A[j+1]=A[j];
A[high+1]=A[0];
}
}
算法性能分析
- 空间复杂度: O ( 1 ) O(1) O(1);
- 时间复杂度:比较次数为 O ( n l o g 2 n ) O(nlog_2^n) O(nlog2n),且与初始状态无关,仅取决于表长,但移动次数未改变,时间复杂度为 O ( n 2 ) O(n^2) O(n2)
- 稳定性:稳定
希尔排序
希尔排序的基本思想是:先将待排序表分割成若干形如 L [ i , i + d , i + 2 d , . . . , i + k d ] L[i,i+d,i+2d,...,i+kd] L[i,i+d,i+2d,...,i+kd]的“特殊”子表,即把相隔某个“增量”的记录组成一个子表.对各个子表分别进行直接插入排序,当整个表中的元素已呈“基本有序”时,冉对全体记录进行一次直接插入序。
希尔排序的过程如下:先取一个小于 n n n的步长 d 1 d_1 d1。把表中的全部记录分成 d 1 d_1 d1组,所有距离为的倍数的记录放在同一组,在各组内进行直接插入排序;然后取第二个步长 d 2 < d 1 d_2<d_1 d2<d1,重复上述过程,直到所取到的 d t = 1 d_t=1 dt=1,即所有记录已放在同一组中,再进行直接插入排序,由于此时己经具有较好的局部有序性,故可以很快得到最终结果。到目前为止,尚未求得一个最好的增量序列,希尔提出的方法是 d 1 = n / 2 , d i + 1 = ⌊ d i / 2 ⌋ d_1=n/2,d_{i+1}=\lfloor d_i/2 \rfloor d1=n/2,di+1=⌊di/2⌋,并且最后一个增量等于1。
void ShellSort(ElemType A[], int n){
for(dk=n/2;dk>=1;dk=dk/2){
//步长
for(i=dk+1;i<=n;++i){
if(A[i]<A[i-dk]){
A[0]=A[i];
for(j=i-dk;j>0&&A[0]<A[j];j-=dk)
A[j+dk]=A[j];
A[j+dk]=A[0];
}
}
}
}
希尔排序(这边每轮的d均为上一轮除以2并向上取整,因此比书上多一轮)
算法的性能分析
- 空间效率: O ( 1 ) O(1) O(1);
- 时间效率:由于希尔排序的时间复杂度依赖于增量序列的函数,当n在某个特定范围时,希尔排序的时间复杂度为 O ( n 1.3 ) O(n^{1.3}) O(n1.3),在最坏情况下希尔排序的时间复杂度为 O ( n 2 ) O(n^{2}) O(n2);
- 稳定性:不稳定;
- 适用性:仅适用于顺序存储。
交换排序
冒泡排序
冒泡排序的基本思想是:从后往前(或从前往后)两两比较相邻元素的值,若为逆序(即A[i-1]>A[i]),则交换它们,直到序列比较完。我们称它为第一趟冒泡,结果是将最小的元素交换到待排序列的第一个位置(或将最大的元素交换到待排序列的最后一个位置),关键字最小的元素如气泡一般逐渐往上“漂浮”直至“水面”(或关键字最大的元素如石头一般下沉至水底).
下一趟冒泡时,前一确定的最小元素不再参与比较,每冒泡的结果是把序列中的最小元素(或最大元素)放到了序列的最终位置……这样最多做n-1趟冒泡就能把所有元素排好序。
void BubbleSort(ElemType A[], int n){
for(i=0;i<n-1;i++){
flag=false;
for(j=n-1;j>i;j--)
if(A{
j-1]>A[j]){
swap(A[j-1],A[j]); //交换函数
flag=true;
}
if(flag==false) //当遍历后没有发生交换,说明表已经有序
return;
}
}
- 空间效率: O ( 1 ) O(1) O(1);
- 时间效率:
最好情况下,初始序列为顺序,只需比较 n − 1 n-1 n−1次,移动0次, O ( n ) O(n) O(n);
最坏情况下,初始序列为逆序,需要进行n-1趟冒泡排序,第i趟排序需要进行 n − i n-i n−i次关键字比较,而且每次比较后都必须移动3次来交换元素,这样情况下比较次数为 σ i = 1 n − 1 ( n − i ) = n ( n − 1 2 \sigma_{i=1}^{n-1}(n-i)=\frac{n(n-1}{2} σi=1n−1(n−i)=2