数据结构 第八章 排序 习题

本文详细探讨了各种排序算法,包括内部排序和外部排序。内部排序中的插入排序(直接插入、折半插入、希尔排序)、交换排序(冒泡排序、快速排序)、选择排序(简单选择、堆排序)、归并排序和基数排序被逐一剖析,重点讨论了算法的稳定性、时间复杂度和适用场景。外部排序则讲解了多路平衡归并排序、败者树以及置换-选择排序等方法,强调了归并树和最佳归并树的设计。
摘要由CSDN通过智能技术生成

8.1 排序的定义

排序分类

内部排序

排序期间元素全部存放在内存中的排序

插入(直接插入排序、折半插入排序、希尔排序);交换排序(冒泡排序、快速排序);选择排序(简单选择排序、堆排序);归并排序;基数排序

外部排序

排序期间元素无法全部同时存放在内存中,必须在排序的过程中根据要求不断地在内、外存之间移动
多路归并排序

算法的稳定性

若待排序表中有两个元素 R j R_j Rj R j R_j Rj,其对应的关键字相同,且在排序前 R i R_i Ri R j R_j Rj前面,若使用某一排序算法排序后, R i R_i Ri仍在 R j R_j Rj前面,则称这个排序算法是稳定的,否则称排序算法是不稳定的。

习题8.1

  1. 拓扑排序是将有向图中所有结点排成一个线性序列,在内存中进行,但不满足排序定义,不属于内部排序,也不属于外部排序。
  2. 对于任意基于比较的排序,比较次数至少为 ⌈ l o g 2 ( n ! ) ⌉ \lceil log_2^{(n!)}\rceil log2(n!)

8.2 插入排序

直接插入排序

待排序表L[1…n]在某次排序过程中的某一时刻状态下:
直接插入排序
要将元素L(i)插入到已有序的子序列L[1…i-1]中,需要执行以下操作:
1)查找出L(i)在L[1…i-1]中的插入位置k
2)将L[k…i-1]中的所有元素依次后移一个位置。
3)将L(i)复制到L(k)

void InsertSort(ElemType A[], int n){
   
	int i,j;
	for(i=2;i<=n;i++){
   
		if(A[i]<A[i-1]){
   
			A[0]=A[i];	//哨兵
			for(j=i-1;A[0]<A[j];--j)	//从后往前查找待插入位置
				A[j+1]=A[j];
			A[j+1]=A[0];
		}
	}
}

结合上代码具体实现过程演示(可能有小错误,R2这轮应该是不用的)
直接插入排序具体实现过程
算法性能分析

  • 空间效率:常数个辅助单元, O ( 1 ) O(1) O(1)
  • 时间效率:在排序过程中,向有序子表中逐个地插入元素的操作进行了 n − 1 n-1 n1趟,每趟操作都分为比较和移动,比较次数和移动次数取决于初始状态。
    最好情况:表中有序,只需比较,不需要移动, O ( n ) O(n) O(n)
    最坏情况:表为逆序,比较次数为 σ i = 2 n i \sigma_{i=2}^ni σi=2ni,移动次数为 σ i = 2 n ( i + 1 ) \sigma_{i=2}^n(i+1) σi=2n(i+1) O ( n 2 ) O(n^2) O(n2)
    平均情况:取上述最好与最坏情况的平均值, O ( n 2 ) O(n^2) O(n2)
  • 稳定性:稳定。
  • 适用性:顺序和链式都可以。

折半插入排序

直接插入排序算法的改进,将比较和移动操作分离,先折半查找出元素待插入位置,然后统一地移动待插入位置之后的所有元素。

void InsertSort(ElemType A[], int n){
   
	int i,j,low,high,mid;
	for(i=2;i<=n;i++){
   
		A[0]=A[i];
		low=1;
		high=i-1;
		while(low<=high){
   	//折半查找
			mid=(low+high)/2
			if(A[mid]>A[0])
				high=mid-1;
			else
				low=mid+1;
		}
		for(j=i-1;j>=high+1;--j)
			A[j+1]=A[j];
		A[high+1]=A[0];
	}
}

折半插入排序

算法性能分析

  • 空间复杂度: O ( 1 ) O(1) O(1)
  • 时间复杂度:比较次数为 O ( n l o g 2 n ) O(nlog_2^n) O(nlog2n),且与初始状态无关,仅取决于表长,但移动次数未改变,时间复杂度为 O ( n 2 ) O(n^2) O(n2)
  • 稳定性:稳定

希尔排序

希尔排序的基本思想是:先将待排序表分割成若干形如 L [ i , i + d , i + 2 d , . . . , i + k d ] L[i,i+d,i+2d,...,i+kd] L[i,i+d,i+2d,...,i+kd]的“特殊”子表,即把相隔某个“增量”的记录组成一个子表.对各个子表分别进行直接插入排序,当整个表中的元素已呈“基本有序”时,冉对全体记录进行一次直接插入序。
希尔排序的过程如下:先取一个小于 n n n的步长 d 1 d_1 d1。把表中的全部记录分成 d 1 d_1 d1组,所有距离为的倍数的记录放在同一组,在各组内进行直接插入排序;然后取第二个步长 d 2 < d 1 d_2<d_1 d2<d1,重复上述过程,直到所取到的 d t = 1 d_t=1 dt=1,即所有记录已放在同一组中,再进行直接插入排序,由于此时己经具有较好的局部有序性,故可以很快得到最终结果。到目前为止,尚未求得一个最好的增量序列,希尔提出的方法是 d 1 = n / 2 , d i + 1 = ⌊ d i / 2 ⌋ d_1=n/2,d_{i+1}=\lfloor d_i/2 \rfloor d1=n/2,di+1=di/2,并且最后一个增量等于1。

void ShellSort(ElemType A[], int n){
   	
	for(dk=n/2;dk>=1;dk=dk/2){
   	//步长
		for(i=dk+1;i<=n;++i){
   
			if(A[i]<A[i-dk]){
   
				A[0]=A[i];
				for(j=i-dk;j>0&&A[0]<A[j];j-=dk)
					A[j+dk]=A[j];
				A[j+dk]=A[0];
			}
		}
	}
}

希尔排序(这边每轮的d均为上一轮除以2并向上取整,因此比书上多一轮)
希尔排序

算法的性能分析

  • 空间效率: O ( 1 ) O(1) O(1)
  • 时间效率:由于希尔排序的时间复杂度依赖于增量序列的函数,当n在某个特定范围时,希尔排序的时间复杂度为 O ( n 1.3 ) O(n^{1.3}) O(n1.3),在最坏情况下希尔排序的时间复杂度为 O ( n 2 ) O(n^{2}) O(n2)
  • 稳定性:不稳定;
  • 适用性:仅适用于顺序存储。

交换排序

冒泡排序

冒泡排序的基本思想是:从后往前(或从前往后)两两比较相邻元素的值,若为逆序(即A[i-1]>A[i]),则交换它们,直到序列比较完。我们称它为第一趟冒泡,结果是将最小的元素交换到待排序列的第一个位置(或将最大的元素交换到待排序列的最后一个位置),关键字最小的元素如气泡一般逐渐往上“漂浮”直至“水面”(或关键字最大的元素如石头一般下沉至水底).
下一趟冒泡时,前一确定的最小元素不再参与比较,每冒泡的结果是把序列中的最小元素(或最大元素)放到了序列的最终位置……这样最多做n-1趟冒泡就能把所有元素排好序。

void BubbleSort(ElemType A[], int n){
   
	for(i=0;i<n-1;i++){
   
		flag=false;
		for(j=n-1;j>i;j--)
			if(A{
   j-1]>A[j]){
   
				swap(A[j-1],A[j]); //交换函数
				flag=true;
			}
		if(flag==false)	//当遍历后没有发生交换,说明表已经有序
			return;
	}
}

冒泡排序

  • 空间效率: O ( 1 ) O(1) O(1)
  • 时间效率:
    最好情况下,初始序列为顺序,只需比较 n − 1 n-1 n1次,移动0次, O ( n ) O(n) O(n)
    最坏情况下,初始序列为逆序,需要进行n-1趟冒泡排序,第i趟排序需要进行 n − i n-i ni次关键字比较,而且每次比较后都必须移动3次来交换元素,这样情况下比较次数为 σ i = 1 n − 1 ( n − i ) = n ( n − 1 2 \sigma_{i=1}^{n-1}(n-i)=\frac{n(n-1}{2} σi=1n1(ni)=2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值