LeetCode刷题-爬楼梯(动态规划)

这篇博客探讨了LeetCode中的一道经典问题——爬楼梯,通过动态规划的方法解决。博主解释了如何利用F(n)=F(n-1)+F(n-2)的递推公式,计算出到达n阶楼梯的不同爬法,并给出了3阶楼梯的3种解决方案作为示例。
摘要由CSDN通过智能技术生成

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

F(n)=F(n-1)+F(n-2)最终到达时最后一步只有爬一阶和爬二阶两种可能
总的方法数为爬一阶和爬二阶两种方法的总和。

class Solution {
   
public:
    int climbStairs(int n) {
   
        int a = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值