Github全球第一的免费waf防火墙雷池社区版的语义分析检测算法

本文讨论了传统规则匹配方法在Web应用防火墙中的局限性,以及雷池科技如何通过引入智能语义分析算法,提供更精确、低误报的攻击识别。该技术能深度解析HTTP载荷,匹配编程语言并进行威胁评级,显著提升Web安全防护能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传统规则防护,在当下为什么失灵? 当下,Web 应用防火墙大多采用规则匹配方式来识别和阻断攻击流量,但由于 Web 攻击成本低、方式复杂多样、高危漏洞不定期爆发等原因,管理者们在安全运维工作中不得不持续调整防护规则,以保障业务的可用性和安全性。尽管如此,每天依然面临着不少的误报和漏报,影响正常业务运转甚至导致 Web 服务失陷。

究其原因,是由于基于规则匹配的攻击识别方法存在先天不足导致的。在乔姆斯基文法体系中,编写匹配规则的正则文法属于 3 型文法,而用于构造攻击 Payload 的程序语言属于 2 型文法,如下图所示:

从文法表达能力比较,3 型文法包含在 2 型文法之内,基于正则的规则描述无法完全覆盖基于程序语言的攻击 Payload,这也是基于规则匹配识别攻击的 WAF 防护效果低于预期的根本原因。

雷池的解决之道:算法的革新重构 WAF 长亭科技自成立起便深入探索 Web 安全防护的新思路,创新性提出以 “智能语义分析算法” 解决 Web 攻击识别问题,给 WAF 内置 “智能大脑”,使其具备自主识别攻击行为的能力,同时结合机器学习建模,不断增强和完善 “大脑” 的分析能力,不依赖传统的规则库即可满足 Web 应用日常安全防护需求。

雷池通过对 Web 请求和返回内容进行智能分析,使 WAF 具备智能判断攻击威胁的能力。智能语义分析算法由词法分析、语法分析、语义分析和威胁模型匹配 4 个步骤组成。

雷池内置涵盖常用编程语言的编译器,通过对 HTTP 的载荷内容进行深度解码后,按照其语言类型匹配相应语法编译器,进而匹配威胁模型得到威胁评级,阻断或允许访问请求。

与规则匹配型威胁检测方式相比,智能语义分析技术具有准确率高、误报率低的特点。以 SQL 注入检测为例:

作为全球范围内第一款以智能语义分析算法为核心引擎能力打造的下一代 WAF,雷池展现出了更多让安全产品 “更聪明” 的可能。除了形成了质变的检测引擎的精准程度,它可以通过插件形式灵活扩展、实现瑞士军刀般的功能增加,可以变形适配、安装部署进各种网络环境,可以跟机器学习等前沿技术更好的融合、增强流量分析的能力等。

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(
小区物业管理系统是一款基于.NET平台开发的软件应用,用于全面管理住宅小区的日常运营。它通过多种功能提升物业管理效率、优化服务质量,并促进业主与物业之间的沟通。在设计过程中,该系统采用了UML(统一建模语言)来确保其结构化和可维护性。UML是一种标准化的建模工具,通过图形化方式描述系统的结构与行为,帮助开发者理解和实现复杂的软件项目。 本项目涵盖了UML的十大模型图,包括用例图、类图、对象图、序列图、协作图、状态图、活动图、组件图、部署图和包图。这些模型图从不同角度描绘系统,例如用例图展示参与者(如业主、物业人员)与系统功能的交互;类图定义系统中的类、接口及其关系;对象图是类图的实例;序列图和协作图描述对象间的动态交互;状态图和活动图关注行为变化;组件图和部署图关注物理结构;包图则用于组织模块结构。 压缩包中的“杨平.doc”可能是设计者或项目负责人杨平的工作文档,包含项目需求、设计思路等重要信息。“任务书.doc”应明确项目的具体任务要求,如功能需求和性能指标。“小区物业管理系统.mdl”是UML模型文件,记录了系统的详细设计。“小区物业”可能是其他相关文件,如源代码或数据库脚本。整个项目提供了从需求分析到系统实现的完整流程,对于学习.NET开发和理解UML建模技术具有重要参考价值。开发者通过研究这些模型图,能够更好地构建类似的物业管理系统,提升软件工程实践能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值