例题1
给定N个数(可能为负数),从中选择K个数,使得K个数之和等于一个给定的数X;若有多解,取元素平方和最大的一组解。
我debug时输出了一些过程结果,保留了下来可以方便理解过程,如果大家看不明白可以跑一下,代码如下:
#include<bits\stdc++.h>
#define maxn 10
using namespace std;
int N,K,X,maxSumSqu=-1,A[maxn];
vector<int>temp,ans;
void DFS(int index,int nowK,int sum,int sumSqu){
if(nowK==K&&sum==X){
if(sumSqu>maxSumSqu){
maxSumSqu=sumSqu;
ans=temp;
}
return;
}
if(index==N||nowK>K||sum>X){
cout<<"return的作用"<<nowK<<" "<<sum<<endl;
return;
}
temp.push_back(A[index]);cout<<"选择了第"<<index+1<<"个数:"<<A[index]<<endl;
DFS(index+1,nowK+1,sum+A[index],sumSqu+A[index]*A[index]);//选第index个数
temp.pop_back();cout<<"不选择第"<<index+1<<"个数:"<<A[index]<<endl;
DFS(index+1,nowK,sum,sumSqu); //不选第index个数
}
int main()
{
cin>>N>>K>>X;
for(int i=0;i<N;i++){
cin>>A[i];
}
DFS(0,0,0,0);
cout<<"最大平方和为:"<<maxSumSqu<<endl;
cout<<"结果如下:"<<endl;
for(int i=0;i<K;i++){
cout<<ans[i]<<" ";
}
return 0;
}
例题2
你有一架天平和N个砝码, 这 N个砝码重量依次是W1,W2,Wn 请你计算一共可以称出多少种不同的重量?假设仅可以放在天平一边。
#include<bits\stdc++.h>
using namespace std;
int N,index=0,sum=0;
int W[10];
int ans_num=0;
int ans[20]= {0};
int Search(int goal,int ans[]) {
for(int i=0; i<20; i++) {
if(goal==ans[i]) {
return 1;
}
}
return 0;
}
void DFS(int index,int sum,int ans[]) {
if(index==N) {
if(!Search(sum,ans)) {
ans[ans_num]=sum;
ans_num++;
}
cout<<"共有"<<ans_num<<"个解如下"<<endl;
for(int i=0; i<ans_num; i++) {
cout<<ans[i]<<endl;
}
return;
}
cout<<"不选第"<<index+1<<"个,此时总重量为:"<<sum<<endl;
DFS(index+1,sum,ans);//没选第index个
cout<<"选了第"<<index+1<<"个,总重量变化为:"<<sum<<"->"<<sum+W[index]<<endl;
DFS(index+1,sum+W[index],ans);//选了第index个
}
int main() {
cin>>N;
for(int i=0; i<N; i++) {
cin>>W[i];
}
DFS(index,sum,ans);
cout<<"共有"<<ans_num<<"个解"<<endl;
return 0;
}