DFS例题

一、全排列

排列与组合是常用的数学方法。

先给一个正整数 ( 1 < = n < = 10 )

例如n=3,所有组合,并且按字典序输出:

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

AC代码:

#include<bits\stdc++.h>
using namespace std;
int path[10];
int n;
bool book[10]= {0};
void DFS(int index) {
    if(index==n) {
        for(int i=0; i<n-1; i++) {
            cout<<path[i]<<" ";
        }
        cout<<path[n-1]<<endl;
        return;
    }
    for(int i=1; i<=n; i++) {
        if(!book[i]) {
            path[index]=i;
            book[i]=1;
            DFS(index+1);
            book[i]=0;//回溯,初始化
        }
    }
}
int main() {
    cin>>n;
    DFS(0);
    return 0;
}

二、组合

排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r < = n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数。

现要求你不用递归的方法输出所有组合。

例如n = 5 ,r = 3 ,所有组合为:

1 2 3

1 2 4

1 2 5

1 3 4

1 3 5

1 4 5

2 3 4

2 3 5

2 4 5

3 4 5

AC代码:

#include<iostream>
#include<algorithm>
using namespace std; 
int n,k;
int ans[10];
bool book[10]={0};
void DFS(int num){
    if(num==k){
        for(int i=0;i<k;i++)
        {
            cout<<ans[i]<<" ";
        }
        cout<<endl;
        return;
    }
    for(int i=1;i<=n;i++){
        if(book[i]==0&&i>ans[num-1]){//与全排列相比,只要加上递增顺序,就能保证没有重复
            ans[num]=i;
            book[i]=1;
            DFS(num+1);
            book[i]=0;    
        }
    }
}
int main()
{
    cin>>n>>k;
    DFS(0);
    return 0;
}

三、组合求和为素数

已知 n 个整数b1,b2,…,bn

以及一个整数 k(k<n)。

从 n 个整数中任选 k 个整数相加,可分别得到一系列的和。

例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为:

    3+7+12=22  3+7+19=29  7+12+19=38  3+12+19=34。

  现在,要求你计算出和为素数共有多少种。

例如上例,只有一种的和为素数:3+7+19=29。

AC代码:

#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
int n,k,num=0,sum=0;
int a[5000000];
int ans[5000000];
bool book[5000000]={0};
int Sushu(int n)
{
    if(n<2){return 0;
    }
    for(int i=2;i<=sqrt(n);i++){
        if(n%i==0){
            return 0;
        }
    }
    return 1;
}
void DFS(int index){
    if(index==k){
        for(int i=0;i<k;i++){
            sum+=ans[i];
        }
        if(Sushu(sum)){
            num++;
        }
        sum=0;
    }
    for(int i=0;i<n;i++){
        if(!book[i]&&ans[index-1]<=a[i]){
            ans[index]=a[i];
            book[i]=1;
            DFS(index+1);
            book[i]=0;
        }
    }
}
int main()
{
    cin>>n>>k;
    for(int i=0;i<n;i++)
        cin>>a[i];
    DFS(0);
    cout<<num; 
    return 0;
}

四、经典n皇后

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int n, tot = 0;
int col[15] = {0}, ans[15] = {0}; //col[i]的值为第i行的皇后的列数的值,即j,ans[]数组用来存放结果
bool check(int c, int r) //检查是否和已经放好的皇后冲突
{
  for (int i = 0; i < r; i++)
    if (col[i] == c || (abs(col[i] - c) == abs(i - r))) //因为是逐行放置,所以只考虑纵向和斜向
      return false;
  return true;
}
void dfs(int r,int m)  //在第r行放皇后,m表示行数
{
  if(r==m){    //r==m,即皇后放到最后一行,满足条件,tot++,返回;
    tot++;
    return;
  }
  for(int c=0;c<m;c++) //在此行逐列尝试
     if(check(c,r)){   //检查是否冲突
       col[r]=c;       //不冲突就在此列放皇后
       dfs(r+1,m);     //转到下一行继续尝试
     }
}
int main()
{
  cin>>n;
  for (int i = 0; i <= 13; i++) //算出所有N皇后的答案,先打表,不然会超时
  {
    memset(col, 0, sizeof(col)); //清空col,准备计算下一个N皇后问题
    tot = 0;
    dfs(0,i);
    ans[i] = tot;
  }
  cout << ans[n] << endl;
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值