题意
一个1e5的字符串a, 1e5次操作
o
p
l
r
c
op\ l\ r\ c
op l r c(下标从1开始)
o
p
op
op == 1:把
[
l
,
r
]
[l, r]
[l,r]的所有字符改成c
o
p
op
op == 2:询问
[
l
,
r
]
[l, r]
[l,r]是否存在长度为c的循环节
解法
首先有一个结论, 若
[
l
,
r
−
c
]
[l, r-c]
[l,r−c]与
[
l
+
c
,
r
]
[l+c, r]
[l+c,r]相同,则长度为
c
c
c的循环节存在
为了节约字符串比较的时间,显然要把字符串的每个字符哈希为
h
[
i
]
=
a
[
i
]
∗
b
a
s
e
n
−
i
−
1
(
i
从
0
开
始
)
h[i] = a[i] * base^{n-i-1}\ \ (i从0开始)
h[i]=a[i]∗basen−i−1 (i从0开始)
的形式
每个子串的哈希值就是
∑
i
=
l
r
h
[
i
]
\sum_{i=l}^{r} h[i]
i=l∑rh[i]
这个sigma显然要用线段树或树状数组维护
这题树状数组怎么区间更新我想不到(流下了不学无术的泪水o(╥﹏╥)o)
讲讲线段树怎么写。
(该mod的地方自行脑补,不写出来了)
线段树部分
上面提到了,要维护的是区间的哈希值之和
∑
i
=
l
r
h
[
i
]
\sum_{i=l}^{r} h[i]
∑i=lrh[i]
如果是单点更新,那其实是很好写的,每个叶子结点都可以直接存
h
[
i
]
h[i]
h[i],更新的时候先把c处理成对应的
h
[
i
]
h[i]
h[i],直接维护区间和即可(这种情况其实用树状数组写起来更舒服,例如这题)
然而区间更新的时候,上面那种写法就不适用了(太菜了想不到 )
现在要解决的问题是:有一个序列
a
[
]
a[]
a[],l
o
g
N
ogN
ogN求出
∑
i
=
l
r
b
a
s
e
i
−
1
∗
a
[
i
]
\sum_{i=l}^r base^{i-1}*a[i]
i=l∑rbasei−1∗a[i]
可以这样维护:
预处理出
b
a
s
e
i
base^i
basei的值
p
[
i
]
p[i]
p[i],
b
a
s
e
i
base^i
basei的前缀和
p
p
[
i
]
pp[i]
pp[i]
对于叶子结点, 保存
a
[
i
]
a[i]
a[i]
pushUp
s
u
m
[
r
t
]
=
s
u
m
[
r
t
<
<
1
]
∗
p
[
r
−
m
]
+
s
u
m
[
r
t
<
<
1
∣
1
]
sum[rt] = sum[rt << 1] * p[r - m] + sum[rt << 1 | 1]
sum[rt]=sum[rt<<1]∗p[r−m]+sum[rt<<1∣1]
可以这样理解:把左右子树的和累加的时候,右子树的和是正确的,但左子树的和要整体在base进制下左移
r
−
m
r-m
r−m位,就好像把123和45拼在一起变成12345时,就是123 *
1
0
2
10^2
102 + 45
query时也是一样的左右合并
update
update很好理解,
[
l
,
r
]
[l, r]
[l,r]的值都被修改为c时,这一段的区间和显然是
c
∗
p
p
[
r
−
l
]
c * pp[r-l]
c∗pp[r−l]
然后再打上lazy标记:lazy[rt] = val;
pushdown同理
代码
(这题test75卡ull自然溢出…)
#include <bits/stdc++.h>
using namespace std;
typedef long long ull;
typedef pair<ull, ull> puu;
const int base = 31;
const int maxn = 100005;
const int mod = 1e9 + 9;
char a[maxn];
ull pp[maxn], p[maxn];
#define ls l, m, rt << 1
#define rs m+1, r, rt << 1 | 1
ull sum[maxn << 2];
int lazy[maxn << 2];
void build(int l, int r, int rt) {
lazy[rt] = 0;
if (l == r) {
sum[rt] = ull(a[l]);
return;
}
int m = l + r >> 1;
build(ls);
build(rs);
sum[rt] = (sum[rt << 1] * p[r - m] % mod + sum[rt << 1 | 1]) % mod;
};
inline void pushDown(int l, int r, int rt) {
if (lazy[rt]) {
int m = l + r >> 1;
lazy[rt << 1] = lazy[rt << 1 | 1] = lazy[rt];
sum[rt << 1] = pp[m - l] * lazy[rt] % mod;
sum[rt << 1 | 1] = pp[r - m - 1] * lazy[rt] % mod;
lazy[rt] = 0;
}
}
void update(int L, int R, int val, int l, int r, int rt) {
if (L <= l && r <= R) {
sum[rt] = pp[r - l] * val % mod;
lazy[rt] = val;
return;
}
int m = l + r >> 1;
pushDown(l, r, rt);
if (L <= m)
update(L, R, val, ls);
if (R > m)
update(L, R, val, rs);
sum[rt] = (sum[rt << 1] * p[r - m] % mod + sum[rt << 1 | 1]) % mod;
}
ull query(int L, int R, int l, int r, int rt) {
if (L == l && r == R)
return sum[rt];
int m = l + r >> 1;
pushDown(l, r, rt);
ull ans = 0;
if (R <= m)
return query(L, R, ls);
else if (L > m)
return query(L, R, rs);
else {
ans = (query(L, m, ls) * p[R - m] % mod + query(m + 1, R, rs)) % mod;
return ans;
}
}
int n, m, k;
int main() {
cin >> n >> m >> k;
m += k;
p[0] = pp[0] = 1;
for (int i = 1; i <= n; ++i) {
p[i] = p[i - 1] * base % mod;
pp[i] = (p[i - 1] * base % mod + pp[i - 1]) % mod;
}
cin >> a;
build(0, n - 1, 1);
int op, l, r, c;
ull h1, h2;
while (m--) {
cin >> op >> l >> r >> c;
--l, --r;
if (op == 1) {
update(l, r, c + '0', 0, n - 1, 1);
}
else {
if (r - l + 1 <= c) {
cout << "YES\n";
continue;
}
h1 = query(l, r - c, 0, n - 1, 1);
h2 = query(l + c, r, 0, n - 1, 1);
if (h1 == h2)
cout << "YES\n";
else
cout << "NO\n";
}
}
return 0;
}