- 博客(8)
- 收藏
- 关注
原创 阿里云天池机器task4
前言龙珠机器学习训练营的第四个阶段了,这一部分主要是赛事实战,我这里也主要采用了前面所学到的一些模型来解决这次比赛。快来一起挖掘幸福感赛前预览首先我们看一下比赛的大致要求和数据提供这次比赛大概是通过问卷中的问题来获取一些人的个人情况等,从中提取重要因素用来判断幸福感。数据可视化import pandas as pdimport matplotlib.pyplot as plt#显示所有列pd.set_option('display.max_columns', None)#显示所
2022-03-30 22:50:15 105
原创 阿里云天池机器task3
一 原理简介:它是一款基于GBDT(梯度提升决策树)算法的分布式梯度提升框架,为了满足缩短模型计算时间的需求,LightGBM的设计思路主要集中在减小数据对内存与计算性能的使用,以及减少多机器并行计算时的通讯代价。LightGBM可以看作是XGBoost的升级豪华版,在获得与XGBoost近似精度的同时,又提供了更快的训练速度与更少的内存消耗。LightGBM的主要优点:简单易用。提供了主流的Python\C++\R语言接口,用户可以轻松使用LightGBM建模并获得相当不错的效果。高效可扩展
2022-03-30 22:46:13 167
原创 阿里云天池机器task2
一 原理简介:XGBoost本质上还是一个GBDT,但是力争把速度和效率发挥到极致,所以叫X (Extreme) GBoosted。XGBoost的核心算法思想不难,基本就是:不断地添加树,不断地进行特征分裂来生长一棵树,每次添加一个树,其实是学习一个新函数f(x),去拟合上次预测的残差。当我们训练完成得到k棵树,我们要预测一个样本的分数,其实就是根据这个样本的特征,在每棵树中会落到对应的一个叶子节点,每个叶子节点就对应一个分数最后只需要将每棵树对应的分数加起来就是该样本的预测值。二 代码流程
2022-03-30 22:43:51 92
原创 阿里云天池机器task1
逻辑回归简单介绍1.1逻辑回归英文名称逻辑回归(logistic regression),因此调包时常用lr代替逻辑回归算法包。1.2逻辑回归优劣势优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;缺点:容易欠拟合,分类精度可能不高1.3逻辑回归的应用1、逻辑回归模型现在同样是很多分类算法的基础组件,比如 分类任务中基于GBDT算法+LR逻辑回归实现的信用卡交易反欺诈,CTR(点击通过率)预估等,其好处在于输出值自然地落在0到1之间,并且有概率意义。模型清晰,有对应的概率.
2022-03-30 22:39:13 76
原创 阿里天池-python训练营task4
列表定义类别,list,语法为 [元素1, 元素2, ..., 元素n]有序集合没有固定大小能够保存任意数量任意类型python对象创建方法普通列表range() 创建列表推导式创建列表混合列表空列表添加元素append 方法list.append 在列表末尾添加新的对象,只接受一个参数,参数可以是任何数据类型,被追加的元素在 list 中保持着原结构类型extend 方法list.extend(seq) 在列表末尾一次性追加另一个序列中的多个值(用新..
2022-03-22 20:32:20 65
原创 阿里天池-python训练营task3
1.函数1.1 函数的定义函数以def关键词开头,后接函数名和圆括号()。函数执行的代码以冒号起始,并且缩进。return [表达式] 结束函数,选择性地返回一个值给调用方。不带表达式的return相当于返回None。def functionname (parameters): “函数文档字符串” functionsuite return [expression]1.2 函数的调用【例子】def printme(str): print(str)...
2022-03-22 20:29:56 141
原创 阿里天池-python训练营task2
一、学习知识点概要本次主要学习Python中的容器(序列)类型,包括:列表(list)元组(tuple)字符串(str)字典(dict)集合(set)二、学习内容I.列表(list)1.定义列表(list)为有序集合,可以保存任意类型的对象,语法为[元素1,元素2,……,元素n]。列表的语法点在于用中括号“[]”将元素放在一起,用逗号“,”将元素隔开2.创建列表列表可以通过直接赋值创建,也可以用内置方法list(sub)把可迭代对象sub转化为列表,其中sub可以为range对象
2022-03-22 20:02:18 209
原创 阿里天池-python训练营task1
一、数据类型1.数据类型与转换保留浮点型小数点后n位,可以用decimal包里的Decimal对象和getcontext()方法实现,默认精度值是28位(prec=28)import decimalfrom decimal import Decimal#默认是28位a=decimal.getcontext()print(a)#Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999, capitals=1,
2022-03-22 19:51:47 123
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人