BZOJ 4373 算术天才⑨与等差数列

该博客介绍了如何解决BZOJ 4373问题,即判断给定区间的数是否构成特定公差的等差数列。作者提出了一种利用线段树快速检查最大值、总和的方法,但在某些情况下,这种方法并不充分。为了解决这个问题,博主采取了一种暴力检查和随机抽样结合的策略,对于小范围区间直接检查,大范围区间则随机选取多个位置验证差值是否为公差的倍数。这种方法在实践中通过了测试,但博主认为其科学性有待商榷。
摘要由CSDN通过智能技术生成
算术天才⑨非常喜欢和等差数列玩耍。
有一天,他给了你一个长度为n的序列,其中第i个数为a[i]。
他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能否形成公差为k的等差数列。
当然,他还会不断修改其中的某一项。
为了不被他鄙视,你必须要快速并正确地回答完所有问题。
注意:只有一个数的数列也是等差数列。

Input

第一行包含两个正整数n,m(1<=n,m<=300000),分别表示序列的长度和操作的次数。
第二行包含n个整数,依次表示序列中的每个数a[i](0<=a[i]<=10^9)。
接下来m行,每行一开始为一个数op,
若op=1,则接下来两个整数x,y(1<=x<=n,0<=y<=10^9),表示把a[x]修改为y。
若op=2,则接下来三个整数l,r,k(1<=l<=r<=n,0<=k<=10^9),表示一个询问。
在本题中,x,y,l,r,k都是经过加密的,都需要异或你之前输出的Yes的个数来进行解密。

Output

输出若干行,对于每个询问,如果可以形成等差数列,那么输出Yes,否则输出No。

Sample Input
5 3
1 3 2 5 6
2 1 5 1
1 5 4
2 1 5 1
Sample Output
No
Yes

做法:
这题不会做,做了一个非常非常非常非常

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值