题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
思路及解法
使用递归即可,首先第0级台阶是0次,第1级台阶是1次,跳上第二级台阶可以选择从0直接跳到2,也可以从1跳到2。其他情况,我们可以归纳出,要想跳到n级台阶,最后一步有两种跳法,一种是从n-1级一次跳一级,一种是从n-2级一次跳两级。
f ( n ) = { 0 , n = 0 1 , n = 1 2 , n = 2 f ( n − 1 ) + f ( n − 2 ) , n > 2 f(n)=\begin{cases} 0,n=0\\ 1,n=1\\ 2,n=2\\ f(n-1)+f(n-2),n>2 \end{cases} f(n)=⎩⎪⎪⎪⎨⎪⎪⎪⎧0,n=01,n=12,n=2f(n−1)+f(n−2),n>2
public class Solution {
public int JumpFloor(int target) {
if (target == 0) {
return 0;
} else if (target == 1) {
return 1;
} else if (target == 2) {
return 2;
} else {
return JumpFloor(target - 1) + JumpFloor(target - 2);
}
}
}
但是这样会需要多次重复计算,我们可以利用数组将前面的结果存起来,计算的时候直接取出。
public class Solution {
public int JumpFloor(int target) {
int[] nums = new int[target + 1];
if (target == 0) {
return 0;
} else if (target == 1) {
return 1;
} else if (target == 2) {
return 2;
}
nums[0] = 0;
nums[1] = 1;
nums[2] = 2;
for (int i = 3; i <= target; i++) {
nums[i] = nums[i - 1] + nums[i - 2];
}
return nums[target];
}
}
此文章仅代表自己(本菜鸟)学习积累记录,或者学习笔记,如有侵权,请联系作者删除。人无完人,文章也一样,文笔稚嫩,在下不才,勿喷,如果有错误之处,还望指出,感激不尽~
技术之路不在一时,山高水长,纵使缓慢,驰而不息。
公众号:秦怀杂货店