PriorityQueue的用法和底层实现原理

        先讲使用,再讲原理
        队列是遵循先进先出(First-In-First-Out)模式的,但有时需要在队列中基于优先级处理对象。

        举两个例子:

        作业系统中的调度程序,当一个作业完成后,需要在所有等待调度的作业中选择一个优先级最高的作业来执行,并且也可以添加一个新的作业到作业的优先队列中。
每日交易时段生成股票报告的应用程序中,需要处理大量数据并且花费很多处理时间。客户向这个应用程序发送请求时,实际上就进入了队列。我们需要首先处理优先客户再处理普通用户。在这种情况下,Java的PriorityQueue(优先队列)会很有帮助。
        PriorityQueue类在Java1.5中引入并作为 Java Collections Framework 的一部分。PriorityQueue是基于优先堆的一个无界队列,这个优先队列中的元素可以默认自然排序或者通过提供的Comparator(比较器)在队列实例化的时排序。

        优先队列不允许空值,而且不支持non-comparable(不可比较)的对象,比如用户自定义的类。优先队列要求使用Java Comparable和Comparator接口给对象排序,并且在排序时会按照优先级处理其中的元素。

        优先队列的头是基于自然排序或者Comparator排序的最小元素。如果有多个对象拥有同样的排序,那么就可能随机地取其中任意一个。当我们获取队列时,返回队列的头对象。

        优先队列的大小是不受限制的,但在创建时可以指定初始大小。当我们向优先队列增加元素的时候,队列大小会自动增加。

        PriorityQueue是非线程安全的,所以Java提供了PriorityBlockingQueue(实现BlockingQueue接口)用于Java多线程环境。

        我们有一个用户类Customer,它没有提供任何类型的排序。当我们用它建立优先队列时,应该为其提供一个比较器对象。

        Customer.java

package com.journaldev.collections; 

public class Customer { 

    private int id;

    private String name; 

    public Customer(int i, String n){

        this.id=i;

        this.name=n;

    } 

    public int getId() {

        return id;

    } 

    public String getName() {

        return name;

    } 

}
 

我们使用Java随机数生成随机用户对象。对于自然排序,我们使用Integer对象,这也是一个封装过的Java对象

下面是最终的测试代码,展示如何使用PriorityQueue:

PriorityQueueExample.java

package com.journaldev.collections;

import java.util.Comparator;

import java.util.PriorityQueue;

import java.util.Queue;

import java.util.Random;

public class PriorityQueueExample {

    public static void main(String[] args) {

        // 优先队列自然排序示例

        Queue<Integer> integerPriorityQueue = new PriorityQueue<>(7);

        Random rand = new Random();

        for(int i=0;i<7;i++){

            integerPriorityQueue.add(new Integer(rand.nextInt(100)));

        }

        for(int i=0;i<7;i++){

            Integer in = integerPriorityQueue.poll();

            System.out.println("Processing Integer:"+in);

        }

        // 优先队列使用示例

        Queue<Customer> customerPriorityQueue = new PriorityQueue<>(7, idComparator);

        addDataToQueue(customerPriorityQueue);

        pollDataFromQueue(customerPriorityQueue);

    }

    // 匿名Comparator实现

    public static Comparator<Customer> idComparator = new Comparator<Customer>(){

        @Override

        public int compare(Customer c1, Customer c2) {

            return (int) (c1.getId() - c2.getId());

        }

    };

    // 用于往队列增加数据的通用方法

    private static void addDataToQueue(Queue<Customer> customerPriorityQueue) {

        Random rand = new Random();

        for(int i=0; i<7; i++){

            int id = rand.nextInt(100);

            customerPriorityQueue.add(new Customer(id, "Pankaj "+id));

        }

    }

    // 用于从队列取数据的通用方法

    private static void pollDataFromQueue(Queue<Customer> customerPriorityQueue) {

        while(true){

            Customer cust = customerPriorityQueue.poll();

            if(cust == null) break;

            System.out.println("Processing Customer with ID="+cust.getId());

        }

    }

}

注意我用实现了Comparator接口的Java匿名类,并且实现了基于id的比较器。

当我运行以上测试程序时,我得到以下输出:

Processing Integer:9

Processing Integer:16

Processing Integer:18

Processing Integer:25

Processing Integer:33

Processing Integer:75

Processing Integer:77

Processing Customer with ID=6

Processing Customer with ID=20

Processing Customer with ID=24

Processing Customer with ID=28

Processing Customer with ID=29

Processing Customer with ID=82

Processing Customer with ID=96
        从输出结果可以清楚的看到,最小的元素在队列的头部因而最先被取出。如果不实现Comparator,在建立customerPriorityQueue时会抛出ClassCastException。

    Exception in thread "main" java.lang.ClassCastException: com.journaldev.collections.Customer cannot be cast to java.lang.Comparable

    at java.util.PriorityQueue.siftUpComparable(PriorityQueue.java:633)

    at java.util.PriorityQueue.siftUp(PriorityQueue.java:629)

    at java.util.PriorityQueue.offer(PriorityQueue.java:329)

    at java.util.PriorityQueue.add(PriorityQueue.java:306)

    at com.journaldev.collections.PriorityQueueExample.addDataToQueue(PriorityQueueExample.java:45)

    at com.journaldev.collections.PriorityQueueExample.main(PriorityQueueExample.java:25)
 

实现原理:

Java中PriorityQueue通过二叉小顶堆实现,可以用一棵完全二叉树表示(任意一个非叶子节点的权值,都不大于其左右子节点的权值),也就意味着可以通过数组来作为PriorityQueue的底层实现。

        上图中我们给每个元素按照层序遍历的方式进行了编号,如果你足够细心,会发现父节点和子节点的编号是有联系的,更确切的说父子节点的编号之间有如下关系:

        leftNo = parentNo*2+1

        rightNo = parentNo*2+2

        parentNo = (nodeNo-1)/2

        通过上述三个公式,可以轻易计算出某个节点的父节点以及子节点的下标。这也就是为什么可以直接用数组来存储堆的原因。

        PriorityQueue的peek()和element操作是常数时间,add(), offer(), 无参数的remove()以及poll()方法的时间复杂度都是log(N)。        

    方法剖析

    add()和offer()

   add(E e)offer(E e)的语义相同,都是向优先队列中插入元素,只是Queue接口规定二者对插入失败时的处理不同,前者在插入失败时抛出异常,后则则会返回false。对于PriorityQueue这两个方法其实没什么差别。

        

        新加入的元素可能会破坏小顶堆的性质,因此需要进行必要的调整。

//offer(E e)
public boolean offer(E e) {
    if (e == null)//不允许放入null元素
        throw new NullPointerException();
    modCount++;
    int i = size;
    if (i >= queue.length)
        grow(i + 1);//自动扩容
    size = i + 1;
    if (i == 0)//队列原来为空,这是插入的第一个元素
        queue[0] = e;
    else
        siftUp(i, e);//调整
    return true;
}

        上述代码中,扩容函数grow()类似于ArrayList里的grow()函数,就是再申请一个更大的数组,并将原数组的元素复制过去,这里不再赘述。需要注意的是siftUp(int k, E x)方法,该方法用于插入元素x并维持堆的特性。

//siftUp()
private void siftUp(int k, E x) {
    while (k > 0) {
        int parent = (k - 1) >>> 1;//parentNo = (nodeNo-1)/2
        Object e = queue[parent];
        if (comparator.compare(x, (E) e) >= 0)//调用比较器的比较方法
            break;
        queue[k] = e;
        k = parent;
    }
    queue[k] = x;
}

        新加入的元素x可能会破坏小顶堆的性质,因此需要进行调整。调整的过程为:k指定的位置开始,将x逐层与当前点的parent进行比较并交换,直到满足x >= queue[parent]为止。注意这里的比较可以是元素的自然顺序,也可以是依靠比较器的顺序。

element()和peek()

        element()和peek()的语义完全相同,都是获取但不删除队首元素,也就是队列中权值最小的那个元素,二者唯一的区别是当方法失败时前者抛出异常,后者返回null。根据小顶堆的性质,堆顶那个元素就是全局最小的那个;由于堆用数组表示,根据下标关系,0下标处的那个元素既是堆顶元素。所以直接返回数组0下标处的那个元素即可。

        代码也就非常简洁:

//peek()
public E peek() {
    if (size == 0)
        return null;
    return (E) queue[0];//0下标处的那个元素就是最小的那个
}

      remove()和poll()

   remove()poll()方法的语义也完全相同,都是获取并删除队首元素,区别是当方法失败时前者抛出异常,后者返回null。由于删除操作会改变队列的结构,为维护小顶堆的性质,需要进行必要的调整。

        

        代码如下:

public E poll() {
    if (size == 0)
        return null;
    int s = --size;
    modCount++;
    E result = (E) queue[0];//0下标处的那个元素就是最小的那个
    E x = (E) queue[s];
    queue[s] = null;
    if (s != 0)
        siftDown(0, x);//调整
    return result;
}

        上述代码首先记录0下标处的元素,并用最后一个元素替换0下标位置的元素,之后调用siftDown()方法对堆进行调整,最后返回原来0下标处的那个元素(也就是最小的那个元素)。重点是siftDown(int k, E x)方法,该方法的作用是从k指定的位置开始,将x逐层向下与当前点的左右孩子中较小的那个交换,直到x小于或等于左右孩子中的任何一个为止。

//siftDown()
private void siftDown(int k, E x) {
    int half = size >>> 1;
    while (k < half) {
        //首先找到左右孩子中较小的那个,记录到c里,并用child记录其下标
        int child = (k << 1) + 1;//leftNo = parentNo*2+1
        Object c = queue[child];
        int right = child + 1;
        if (right < size &&
            comparator.compare((E) c, (E) queue[right]) > 0)
            c = queue[child = right];
        if (comparator.compare(x, (E) c) <= 0)
            break;
        queue[k] = c;//然后用c取代原来的值
        k = child;
    }
    queue[k] = x;
}

remove(Object o)

        remove(Object o)方法用于删除队列中跟o相等的某一个元素(如果有多个相等,只删除一个),该方法不是Queue接口内的方法,而是Collection接口的方法。由于删除操作会改变队列结构,所以要进行调整;又由于删除元素的位置可能是任意的,所以调整过程比其它函数稍加繁琐。具体来说,remove(Object o)可以分为2种情况:1. 删除的是最后一个元素。直接删除即可,不需要调整。2. 删除的不是最后一个元素,从删除点开始以最后一个元素为参照调用一次siftDown()即可。此处不再赘述。

        具体代码如下:

//remove(Object o)
public boolean remove(Object o) {
    //通过遍历数组的方式找到第一个满足o.equals(queue[i])元素的下标
    int i = indexOf(o);
    if (i == -1)
        return false;
    int s = --size;
    if (s == i) //情况1
        queue[i] = null;
    else {
        E moved = (E) queue[s];
        queue[s] = null;
        siftDown(i, moved);//情况2
        ......
    }
    return true;
}

参考文献:

https://www.cnblogs.com/CarpenterLee/p/5488070.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值