笔记-关于神经网络黑盒模型可解释性,可视化

原博地址:深度学习黑盒可视化指南,从隐藏层开始

摘:

一旦神经网络接收到相当大的所需数据集后,该网络就会使用其精确的知识“权重”来证明或识别未知数据样本上的模式。

即在经过大量数据集训练以后,神经网络就可以学会该数据集的知识,知识表现为“权重”。知识可以用来判断与数据集同分布的数据的模式,即pattern。

数据偏向问题的例子

  • 文中关于识别隐匿的tank,却表现为识别天气的模型。

这个故事的来源是这样的:
美国陆军希望使用神经网络来自动检测伪装的敌方坦克。研究人员用两组数据来训练神经网络,一组是50张坦克伪装在树林中的照片,另一组是50张没有坦克的树林照片。然后,研究人员又拍摄了另外一组100张的照片,并进行了测试。
神经网络将剩余的所有照片都进行了正确的分类。并且分类结果得到成功确认!研究人员将他们的检测方式移交给了五角大楼,五角大楼很快将其退还了,他们抱怨在该神经网络上的测试完全失败。
事实证明,在用于训练的数据集中,伪装坦克的照片是在阴天拍摄的,而平原森林的图像是在晴天拍摄的。神经网络只不过是学会了区分多云和晴天,而不是学会识别伪装的坦克。
无论故事是否真实,它都突出了深度学习中的“数据偏向”这一重要问题,但同时也让一些人认识到,他们只有在得到最终输出的结果后才能知道神经网络正在学习什么。即使结果对于给定的数据而言是正确的,但是更重要的是知道网络是如何给出这些结果的,这就是为什么我们必须要了解隐藏层的工作原理。

  • 关于词向量模型中的性别歧视问题。

可视化的三个层面

前-数据层面的可视化-输入

  • 显著图
    像素级,pixels,输入图像的某个像素对输出的影响的heat-map。

    显著图计算每个像素对结果的影响。这涉及到计算输入图像上每一个像素的输出梯度。正梯度表示像素值的变化会增加输出值。论文《 Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps》(《深度卷积网络:可视化图像分类模型和显著图》)最早介绍了这项技术,论文地址:https://arxiv.org/pdf/1312.6034v2.pdf

狗狗
heat-map
狗狗识别中的像素级热力图,可以看到对输出影响较大的点分布在狗狗脸部。

  • 遮挡图
    区域级,regions,输入图像的某个区域对输出的影响的heat-map。

    遮挡,在英语中的意思是“隐藏或阻挡”某物。这就是遮挡图的工作原理。图像的某些部分被遮盖或“遮挡”,与此同时计算类的概率。如果概率减少,则图像的这部分很重要,否则就不重要。

猫识别中的遮挡图
对猫识别重要性大于0.85的区域

中-分层输出可视化-隐藏层

您可能想知道每个隐藏层是如何对输出层的最终结果起作用的。对模型进行微调以获得预期的结果,这一点尤为重要。那怎么做呢?了解具体每一层最突出的一系列特征,使我们能够在需要时,使用跳跃连接( Skip Connection)来略过这些特性。

原博中关于分层可视化的示意图

要注意的是,初始层正在学习识别形状和边缘等低级特征。这些层了解输入的要点。在随后的图层中,网络会尝试接触越来越多的模糊图案,如腿、耳朵、眼睛、颜色等。这就是为什么我们会说,网络越深,它学得越好。

后-激活最大化图-输出端

构造使输出为x的概率最大的输入图像,即为pattern-x的激活最大化图。
原理与GAN,有相似之处,感觉与编码解码器更类似。
激活pattern-x,然后反向运算得到输入图像。
黑熊和北极熊的激活最大化图
黑熊和北极熊的输出最大化图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值