在技术问答中看到一个问题:有关指定范围内幸运数个数的统计问题。由于以前没写过,就写了一下,顺便帮这位同学解决一下他的问题。
1、题目:
标题:幸运数
幸运数是波兰数学家乌拉姆命名的。它采用与生成素数类似的“筛法”生成。 首先从1开始写出自然数1,2,3,4,5,6,…. 1 就是第一个幸运数。 我们从2这个数开始。把所有序号能被2整除的项删除,变为: 1 _ 3 _ 5 _ 7 _ 9 …. 把它们缩紧,重新记序,为: 1 3 5 7 9 …. 。这时,3为第2个幸运数,然后把所有能被3整除的序号位置的数删去。注意,是序号位置,不是那个数本身能否被3整除!! 删除的应该是5,11, 17, … 此时7为第3个幸运数,然后再删去序号位置能被7整除的(19,39,…) 最后剩下的序列类似: 1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, … 本题要求: 输入两个正整数m n, 用空格分开 (m < n < 1000*1000) 程序输出 位于m和n之间的幸运数的个数(不包含m和n)。 例如: 用户输入: 1 20 程序输出: 5 例如: 用户输入: 30 69 程序输出: 8
资源约定: 峰值内存消耗(含虚拟机) < 64M CPU消耗 < 2000ms
2、代码实现:
/*
2016年12月20日23:01:47
幸运数统计
*/
# include<stdio.h>
# define MAX 50000
int create_luck(int * );
int num_luck(int *,int,int,int);
int main(void)
{
int luck[MAX] = {0};
int max,n,i;
int num1,num2;/*标定范围*/
max = create_luck(luck);/*幸运数生成*/
scanf("%d%d",&num1,&num2);
n = num_luck(luck,max,num1,num2);/*计算num1到num2之间的幸运数个数*/
printf("%d\n",n);
/*for(i=0;i<max;i++){
printf("%d\t",luck[i]);//遍历幸运数
}*/
return 0;
}
int create_luck(int * luck)
{
/*1~2*MAX的幸运数*/
int i,j;
int point_pre=1;/*point_pre用来标记被除数数组下标,也就是上一次循环找到的幸运数*/
int point_max=MAX;/*point_max用来标记遍历一遍完成删除之后剩余的元素个数*/
/*原始奇数数组,第一次将偶数完全删除,所以所有幸运数在奇数中生成即可*/
for(i=0;i<MAX;i++){
luck[i] = 2*i+1;
}
/*生成幸运数*/
while(point_pre < point_max){
for(j = point_pre, i = point_pre; j<point_max; j++){/*i,j从point_pre开始,因为point_pre之前的数都已经是幸运数了*/
if((j+1) % luck[point_pre] != 0){
luck[i] = luck[j];
i++;
}
}
point_pre++;/*幸运数个数加1,也是内层循环初始值后移1*/
point_max = i;/*便遍历一遍之后,i之前的符合局部条件(取余不为0),point_max则划分界限*/
}
/*注意:循环完成时,point_pre之前的数都是幸运数,
但是数组定义长为MAX,point_max之后的数(MAX-point_pre个)是无用的
*/
return point_max;
}
int num_luck(int * luck,int max,int num1,int num2)
{
int i,n=0;
for(i=0;i < max;i++){/*i<point_max是为了确保不会找到无用的数组后半部分*/
if(luck[i] >= num2)
break;
else if(luck[i] > num1)/*不包含num1和num2*/
n++;
}
return n;
}