一、按学习类型分类
从学习过程来看,机器学习可分为监督学习(supervised learning)、无监督学习(unsupervised learning)、半监督学习(semi-supervised learning)、强化学习(reinforcement learning)和深度学习(deep learning)。
1.监督学习
监督学习是从带有类别标签(label)的训练数据中学得一个模型,并基于此模型预测新样本标签的一种学习方式,是机器学习中使用最广泛的一种类型。
2.无监督学习
无监督学习是机器学习的另一大类学习方法,是在无标签的训练样本中发现数据规律的一种学习方式。
3.半监督学习
半监督学习是监督学习与无监督学习结合在一起的一种学习方法。
半监督学习方法训练模型时,可以先利用有标签的样本训练出一个模型,用这个模型去预测新的数据,然后询问专家,再将这个样本变为有标签样本;把这个新获得的有标签的样本加入训练集后重新训练一个模型,再去预测,依次重复,若每次都能预测出对改善模型性能帮助较大的数据,则只需询问专家较少的次数就能构建出较强的模型,从而大幅度降低标记成本。
4.强化学习
强化学习它能根据环境的改变而改变,从而获取最大的收益。
5.深度学习
深度学习的概念来源于对人工神