零基础机器学习(2)之机器学习的类型

一、按学习类型分类

从学习过程来看,机器学习可分为监督学习(supervised learning)、无监督学习(unsupervised learning)、半监督学习(semi-supervised learning)、强化学习(reinforcement learning)和深度学习(deep learning)。

1.监督学习

监督学习是从带有类别标签(label)的训练数据中学得一个模型,并基于此模型预测新样本标签的一种学习方式,是机器学习中使用最广泛的一种类型。

2.无监督学习

无监督学习是机器学习的另一大类学习方法,是在无标签的训练样本中发现数据规律的一种学习方式。

3.半监督学习

半监督学习是监督学习与无监督学习结合在一起的一种学习方法。

半监督学习方法训练模型时,可以先利用有标签的样本训练出一个模型,用这个模型去预测新的数据,然后询问专家,再将这个样本变为有标签样本;把这个新获得的有标签的样本加入训练集后重新训练一个模型,再去预测,依次重复,若每次都能预测出对改善模型性能帮助较大的数据,则只需询问专家较少的次数就能构建出较强的模型,从而大幅度降低标记成本。

4.强化学习

强化学习它能根据环境的改变而改变,从而获取最大的收益。

5.深度学习

深度学习的概念来源于对人工神

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只特立独行猪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值