[洛谷]P1009 阶乘之和 (#高精度 -1.1)

题目描述

用高精度计算出S=1!+2!+3!+…+n!(n≤50)

其中“!”表示阶乘,例如:15!=5×4×3×2×1 。

输入输出格式

输入格式:

一个正整数 N 。

输出格式:

一个正整数 S ,表示计算结果。

输入输出样例

输入样例#1: 复制

3

输出样例#1: 复制

9

思路

直接上大整数类模版。

#include<string>
#include<iostream>
#include<iosfwd>
#include<cmath>
#include<cstring>
#include<stdlib.h>
#include<stdio.h>
#include<cstring>
#define MAX_L 2005 //最大长度,可以修改
using namespace std;
class bign
{
public:
	int len, s[MAX_L];//数的长度,记录数组
//构造函数
	bign();
	bign(const char*);
	bign(int);
	bool sign;//符号 1正数 0负数
	string toStr() const;//转化为字符串,主要是便于输出
	friend istream& operator>>(istream &,bign &);//重载输入流
	friend ostream& operator<<(ostream &,bign &);//重载输出流
//重载复制
	bign operator=(const char*);
	bign operator=(int);
	bign operator=(const string);
//重载各种比较
	bool operator>(const bign &) const;
	bool operator>=(const bign &) const;
	bool operator<(const bign &) const;
	bool operator<=(const bign &) const;
	bool operator==(const bign &) const;
	bool operator!=(const bign &) const;
//重载四则运算
	bign operator+(const bign &) const;
	bign operator++();
	bign operator++(int);
	bign operator+=(const bign&);
	bign operator-(const bign &) const;
	bign operator--();
	bign operator--(int);
	bign operator-=(const bign&);
	bign operator*(const bign &)const;
	bign operator*(const int num)const;
	bign operator*=(const bign&);
	bign operator/(const bign&)const;
	bign operator/=(const bign&);
//四则运算的衍生运算
	bign operator%(const bign&)const;//取模(余数)
	bign factorial()const;//阶乘
	bign Sqrt()const;//整数开根(向下取整)
	bign pow(const bign&)const;//次方
//一些乱乱的函数
	void clean();
	~bign();
};
#define max(a,b) a>b ? a : b
#define min(a,b) a<b ? a : b
bign::bign()
{
	memset(s, 0, sizeof(s));
	len = 1;
	sign = 1;
}
bign::bign(const char *num)
{ 
	*this = num;
}
bign::bign(int num)
{
	*this = num;
}
string bign::toStr() const
{
	string res;
	res = "";
	for (int i = 0; i < len; i++)
		res = (char)(s[i] + '0') + res;
	if (res == "")
		res = "0";
	if (!sign&&res != "0")
		res = "-" + res;
	return res;
}
istream &operator>>(istream &in, bign &num)
{
	string str;
	in>>str;
	num=str;
	return in;
}
ostream &operator<<(ostream &out, bign &num)
{
	out<<num.toStr();
	return out;
}
bign bign::operator=(const char *num)
{
	memset(s, 0, sizeof(s));
	char a[MAX_L] = "";
	if (num[0] != '-')
		strcpy(a, num);
	else
		for (int i = 1; i < strlen(num); i++)
			a[i - 1] = num[i];
	sign = !(num[0] == '-');
	len = strlen(a);
	for (int i = 0; i < strlen(a); i++)
		s[i] = a[len - i - 1] - 48;
	return *this;
}
bign bign::operator=(int num)
{
	char temp[MAX_L];
	sprintf(temp, "%d", num);
	*this = temp;
	return *this;
}
bign bign::operator=(const string num)
{
	const char *tmp;
	tmp = num.c_str();
	*this = tmp;
	return *this;
}
bool bign::operator<(const bign &num) const
{
	if (sign^num.sign)
		return num.sign;
	if (len != num.len)
		return len < num.len;
	for (int i = len - 1; i >= 0; i--)
		if (s[i] != num.s[i])
			return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i]));
	return !sign;
}
bool bign::operator>(const bign&num)const
{
	return num < *this;
}
bool bign::operator<=(const bign&num)const
{
	return !(*this>num);
}
bool bign::operator>=(const bign&num)const
{
	return !(*this<num);
}
bool bign::operator!=(const bign&num)const
{
	return *this > num || *this < num;
}
bool bign::operator==(const bign&num)const
{
	return !(num != *this);
}
bign bign::operator+(const bign &num) const
{
	if (sign^num.sign)
	{
		bign tmp = sign ? num : *this;
		tmp.sign = 1;
		return sign ? *this - tmp : num - tmp;
	}
	bign result;
	result.len = 0;
	int temp = 0;
	for (int i = 0; temp || i < (max(len, num.len)); i++)
	{
		int t = s[i] + num.s[i] + temp;
		result.s[result.len++] = t % 10;
		temp = t / 10;
	}
	result.sign = sign;
	return result;
}
bign bign::operator++()
{ 
	*this = *this + 1;
	return *this;
}
bign bign::operator++(int)
{
	bign old = *this;
	++(*this);
	return old;
}
bign bign::operator+=(const bign &num)
{
	*this = *this + num;		
	return *this;
}
bign bign::operator-(const bign &num) const
{
	bign b=num,a=*this;
	if (!num.sign && !sign)
	{
		b.sign=1;
		a.sign=1;
		return b-a;
	}
	if (!b.sign)
	{
		b.sign=1;
		return a+b;
	}
	if (!a.sign)
	{
		a.sign=1;			
		b=bign(0)-(a+b);
		return b;
	}
	if (a<b)
	{
		bign c=(b-a);
		c.sign=false;
		return c;
	}
	bign result;
	result.len = 0;
	for (int i = 0, g = 0; i < a.len; i++)
	{
		int x = a.s[i] - g;
		if (i < b.len) x -= b.s[i];
		if (x >= 0) g = 0;
		else
		{
			g = 1;
			x += 10;
		}
		result.s[result.len++] = x;
	}
	result.clean();
	return result;
}
bign bign::operator * (const bign &num)const
{
	bign result;
	result.len = len + num.len;
	for (int i = 0; i < len; i++)
    	for (int j = 0; j < num.len; j++)
			result.s[i + j] += s[i] * num.s[j];
	for (int i = 0; i < result.len; i++)
	{
		result.s[i + 1] += result.s[i] / 10;
		result.s[i] %= 10;
	}
	result.clean();
	result.sign = !(sign^num.sign);
	return result;
}
bign bign::operator*(const int num)const
{
	bign x = num;
	bign z = *this;
	return x*z;
}
bign bign::operator*=(const bign&num)
{
	*this = *this * num;
	return *this;
}
bign bign::operator /(const bign&num)const
{
	bign ans;
	ans.len = len - num.len + 1;
	if (ans.len < 0)
	{
		ans.len = 1;
		return ans;
	}
	bign divisor = *this, divid = num;
	divisor.sign = divid.sign = 1;
	int k = ans.len - 1;
	int j = len - 1;
	while (k >= 0)
	{
		while (divisor.s[j] == 0)
			j--;
		if (k > j) k = j;
		char z[MAX_L];
		memset(z, 0, sizeof(z));
		for(int i = j; i >= k; i--)
			z[j - i] = divisor.s[i] + '0';
		bign dividend = z;
		if (dividend < divid)
		{
			k--;
			continue;
		}
		int key = 0;
		while (divid*key<=dividend) key++;
		key--;
		ans.s[k] = key;
		bign temp = divid*key;
		for (int i = 0; i < k; i++)
			temp = temp * 10;
		divisor = divisor - temp;
		k--;
	}
	ans.clean();
	ans.sign = !(sign^num.sign);
	return ans;
}
bign bign::operator/=(const bign&num)
{
	*this = *this / num;
	return *this;
}
bign bign::operator%(const bign& num)const
{
	bign a = *this, b = num;
	a.sign = b.sign = 1;
	bign result, temp = a / b*b;
	result = a - temp;
	result.sign = sign;
	return result;
}
bign bign::pow(const bign& num)const
{
	bign result = 1;
	for (bign i = 0; i < num; i++)
		result = result*(*this);
	return result;
}
bign bign::factorial()const
{
	bign result = 1;
	for(bign i=1;i<=*this;i++)
		result *= i;
	return result;
}
void bign::clean()
{
	if (len == 0) len++;
	while (len > 1 && s[len - 1] == '\0')
		len--;
}
bign bign::Sqrt()const
{
	if(*this<0)return -1;
	if(*this<=1)return *this;
	bign l=0,r=*this,mid;
	while(r-l>1)
	{
		mid=(l+r)/2;
		if(mid*mid>*this)
			r=mid;
		else
			l=mid;
	}
	return l;
}
bign::~bign()
{
}
bign n,i,j,s(1),k(0);
int main()
{
	cin>>n; 
	for(i=1;i<=n;i++)
	{
		s=s*i;
		k=k+s;
	}
	cout<<k<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值